UNPKG

bot18

Version:

A high-frequency cryptocurrency trading bot by Zenbot creator @carlos8f

675 lines (599 loc) 15.2 kB
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>JSDoc: Source: vec2.js</title> <script src="scripts/prettify/prettify.js"> </script> <script src="scripts/prettify/lang-css.js"> </script> <!--[if lt IE 9]> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <![endif]--> <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css"> <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css"> </head> <body> <div id="main"> <h1 class="page-title">Source: vec2.js</h1> <section> <article> <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js"; /** * 2 Dimensional Vector * @module vec2 */ /** * Creates a new, empty vec2 * * @returns {vec2} a new 2D vector */ export function create() { let out = new glMatrix.ARRAY_TYPE(2); out[0] = 0; out[1] = 0; return out; } /** * Creates a new vec2 initialized with values from an existing vector * * @param {vec2} a vector to clone * @returns {vec2} a new 2D vector */ export function clone(a) { let out = new glMatrix.ARRAY_TYPE(2); out[0] = a[0]; out[1] = a[1]; return out; } /** * Creates a new vec2 initialized with the given values * * @param {Number} x X component * @param {Number} y Y component * @returns {vec2} a new 2D vector */ export function fromValues(x, y) { let out = new glMatrix.ARRAY_TYPE(2); out[0] = x; out[1] = y; return out; } /** * Copy the values from one vec2 to another * * @param {vec2} out the receiving vector * @param {vec2} a the source vector * @returns {vec2} out */ export function copy(out, a) { out[0] = a[0]; out[1] = a[1]; return out; } /** * Set the components of a vec2 to the given values * * @param {vec2} out the receiving vector * @param {Number} x X component * @param {Number} y Y component * @returns {vec2} out */ export function set(out, x, y) { out[0] = x; out[1] = y; return out; } /** * Adds two vec2's * * @param {vec2} out the receiving vector * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {vec2} out */ export function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; return out; } /** * Subtracts vector b from vector a * * @param {vec2} out the receiving vector * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {vec2} out */ export function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; return out; } /** * Multiplies two vec2's * * @param {vec2} out the receiving vector * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {vec2} out */ export function multiply(out, a, b) { out[0] = a[0] * b[0]; out[1] = a[1] * b[1]; return out; } /** * Divides two vec2's * * @param {vec2} out the receiving vector * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {vec2} out */ export function divide(out, a, b) { out[0] = a[0] / b[0]; out[1] = a[1] / b[1]; return out; } /** * Math.ceil the components of a vec2 * * @param {vec2} out the receiving vector * @param {vec2} a vector to ceil * @returns {vec2} out */ export function ceil(out, a) { out[0] = Math.ceil(a[0]); out[1] = Math.ceil(a[1]); return out; } /** * Math.floor the components of a vec2 * * @param {vec2} out the receiving vector * @param {vec2} a vector to floor * @returns {vec2} out */ export function floor(out, a) { out[0] = Math.floor(a[0]); out[1] = Math.floor(a[1]); return out; } /** * Returns the minimum of two vec2's * * @param {vec2} out the receiving vector * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {vec2} out */ export function min(out, a, b) { out[0] = Math.min(a[0], b[0]); out[1] = Math.min(a[1], b[1]); return out; } /** * Returns the maximum of two vec2's * * @param {vec2} out the receiving vector * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {vec2} out */ export function max(out, a, b) { out[0] = Math.max(a[0], b[0]); out[1] = Math.max(a[1], b[1]); return out; } /** * Math.round the components of a vec2 * * @param {vec2} out the receiving vector * @param {vec2} a vector to round * @returns {vec2} out */ export function round (out, a) { out[0] = Math.round(a[0]); out[1] = Math.round(a[1]); return out; } /** * Scales a vec2 by a scalar number * * @param {vec2} out the receiving vector * @param {vec2} a the vector to scale * @param {Number} b amount to scale the vector by * @returns {vec2} out */ export function scale(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; return out; } /** * Adds two vec2's after scaling the second operand by a scalar value * * @param {vec2} out the receiving vector * @param {vec2} a the first operand * @param {vec2} b the second operand * @param {Number} scale the amount to scale b by before adding * @returns {vec2} out */ export function scaleAndAdd(out, a, b, scale) { out[0] = a[0] + (b[0] * scale); out[1] = a[1] + (b[1] * scale); return out; } /** * Calculates the euclidian distance between two vec2's * * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {Number} distance between a and b */ export function distance(a, b) { var x = b[0] - a[0], y = b[1] - a[1]; return Math.sqrt(x*x + y*y); } /** * Calculates the squared euclidian distance between two vec2's * * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {Number} squared distance between a and b */ export function squaredDistance(a, b) { var x = b[0] - a[0], y = b[1] - a[1]; return x*x + y*y; } /** * Calculates the length of a vec2 * * @param {vec2} a vector to calculate length of * @returns {Number} length of a */ export function length(a) { var x = a[0], y = a[1]; return Math.sqrt(x*x + y*y); } /** * Calculates the squared length of a vec2 * * @param {vec2} a vector to calculate squared length of * @returns {Number} squared length of a */ export function squaredLength (a) { var x = a[0], y = a[1]; return x*x + y*y; } /** * Negates the components of a vec2 * * @param {vec2} out the receiving vector * @param {vec2} a vector to negate * @returns {vec2} out */ export function negate(out, a) { out[0] = -a[0]; out[1] = -a[1]; return out; } /** * Returns the inverse of the components of a vec2 * * @param {vec2} out the receiving vector * @param {vec2} a vector to invert * @returns {vec2} out */ export function inverse(out, a) { out[0] = 1.0 / a[0]; out[1] = 1.0 / a[1]; return out; } /** * Normalize a vec2 * * @param {vec2} out the receiving vector * @param {vec2} a vector to normalize * @returns {vec2} out */ export function normalize(out, a) { var x = a[0], y = a[1]; var len = x*x + y*y; if (len > 0) { //TODO: evaluate use of glm_invsqrt here? len = 1 / Math.sqrt(len); out[0] = a[0] * len; out[1] = a[1] * len; } return out; } /** * Calculates the dot product of two vec2's * * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {Number} dot product of a and b */ export function dot(a, b) { return a[0] * b[0] + a[1] * b[1]; } /** * Computes the cross product of two vec2's * Note that the cross product must by definition produce a 3D vector * * @param {vec3} out the receiving vector * @param {vec2} a the first operand * @param {vec2} b the second operand * @returns {vec3} out */ export function cross(out, a, b) { var z = a[0] * b[1] - a[1] * b[0]; out[0] = out[1] = 0; out[2] = z; return out; } /** * Performs a linear interpolation between two vec2's * * @param {vec2} out the receiving vector * @param {vec2} a the first operand * @param {vec2} b the second operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {vec2} out */ export function lerp(out, a, b, t) { var ax = a[0], ay = a[1]; out[0] = ax + t * (b[0] - ax); out[1] = ay + t * (b[1] - ay); return out; } /** * Generates a random vector with the given scale * * @param {vec2} out the receiving vector * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned * @returns {vec2} out */ export function random(out, scale) { scale = scale || 1.0; var r = glMatrix.RANDOM() * 2.0 * Math.PI; out[0] = Math.cos(r) * scale; out[1] = Math.sin(r) * scale; return out; } /** * Transforms the vec2 with a mat2 * * @param {vec2} out the receiving vector * @param {vec2} a the vector to transform * @param {mat2} m matrix to transform with * @returns {vec2} out */ export function transformMat2(out, a, m) { var x = a[0], y = a[1]; out[0] = m[0] * x + m[2] * y; out[1] = m[1] * x + m[3] * y; return out; } /** * Transforms the vec2 with a mat2d * * @param {vec2} out the receiving vector * @param {vec2} a the vector to transform * @param {mat2d} m matrix to transform with * @returns {vec2} out */ export function transformMat2d(out, a, m) { var x = a[0], y = a[1]; out[0] = m[0] * x + m[2] * y + m[4]; out[1] = m[1] * x + m[3] * y + m[5]; return out; } /** * Transforms the vec2 with a mat3 * 3rd vector component is implicitly '1' * * @param {vec2} out the receiving vector * @param {vec2} a the vector to transform * @param {mat3} m matrix to transform with * @returns {vec2} out */ export function transformMat3(out, a, m) { var x = a[0], y = a[1]; out[0] = m[0] * x + m[3] * y + m[6]; out[1] = m[1] * x + m[4] * y + m[7]; return out; } /** * Transforms the vec2 with a mat4 * 3rd vector component is implicitly '0' * 4th vector component is implicitly '1' * * @param {vec2} out the receiving vector * @param {vec2} a the vector to transform * @param {mat4} m matrix to transform with * @returns {vec2} out */ export function transformMat4(out, a, m) { let x = a[0]; let y = a[1]; out[0] = m[0] * x + m[4] * y + m[12]; out[1] = m[1] * x + m[5] * y + m[13]; return out; } /** * Rotate a 2D vector * @param {vec2} out The receiving vec2 * @param {vec2} a The vec2 point to rotate * @param {vec2} b The origin of the rotation * @param {Number} c The angle of rotation * @returns {vec2} out */ export function rotate(out, a, b, c) { //Translate point to the origin let p0 = a[0] - b[0], p1 = a[1] - b[1], sinC = Math.sin(c), cosC = Math.cos(c); //perform rotation and translate to correct position out[0] = p0*cosC - p1*sinC + b[0]; out[1] = p0*sinC + p1*cosC + b[1]; return out; } /** * Get the angle between two 2D vectors * @param {vec2} a The first operand * @param {vec2} b The second operand * @returns {Number} The angle in radians */ export function angle(a, b) { let x1 = a[0], y1 = a[1], x2 = b[0], y2 = b[1]; let len1 = x1*x1 + y1*y1; if (len1 > 0) { //TODO: evaluate use of glm_invsqrt here? len1 = 1 / Math.sqrt(len1); } let len2 = x2*x2 + y2*y2; if (len2 > 0) { //TODO: evaluate use of glm_invsqrt here? len2 = 1 / Math.sqrt(len2); } let cosine = (x1 * x2 + y1 * y2) * len1 * len2; if(cosine > 1.0) { return 0; } else if(cosine &lt; -1.0) { return Math.PI; } else { return Math.acos(cosine); } } /** * Returns a string representation of a vector * * @param {vec2} a vector to represent as a string * @returns {String} string representation of the vector */ export function str(a) { return 'vec2(' + a[0] + ', ' + a[1] + ')'; } /** * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===) * * @param {vec2} a The first vector. * @param {vec2} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */ export function exactEquals(a, b) { return a[0] === b[0] &amp;&amp; a[1] === b[1]; } /** * Returns whether or not the vectors have approximately the same elements in the same position. * * @param {vec2} a The first vector. * @param {vec2} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */ export function equals(a, b) { let a0 = a[0], a1 = a[1]; let b0 = b[0], b1 = b[1]; return (Math.abs(a0 - b0) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &amp;&amp; Math.abs(a1 - b1) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1))); } /** * Alias for {@link vec2.length} * @function */ export const len = length; /** * Alias for {@link vec2.subtract} * @function */ export const sub = subtract; /** * Alias for {@link vec2.multiply} * @function */ export const mul = multiply; /** * Alias for {@link vec2.divide} * @function */ export const div = divide; /** * Alias for {@link vec2.distance} * @function */ export const dist = distance; /** * Alias for {@link vec2.squaredDistance} * @function */ export const sqrDist = squaredDistance; /** * Alias for {@link vec2.squaredLength} * @function */ export const sqrLen = squaredLength; /** * Perform some operation over an array of vec2s. * * @param {Array} a the array of vectors to iterate over * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed * @param {Number} offset Number of elements to skip at the beginning of the array * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array * @param {Function} fn Function to call for each vector in the array * @param {Object} [arg] additional argument to pass to fn * @returns {Array} a * @function */ export const forEach = (function() { let vec = create(); return function(a, stride, offset, count, fn, arg) { let i, l; if(!stride) { stride = 2; } if(!offset) { offset = 0; } if(count) { l = Math.min((count * stride) + offset, a.length); } else { l = a.length; } for(i = offset; i &lt; l; i += stride) { vec[0] = a[i]; vec[1] = a[i+1]; fn(vec, vec, arg); a[i] = vec[0]; a[i+1] = vec[1]; } return a; }; })(); </code></pre> </article> </section> </div> <nav> <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul> </nav> <br class="clear"> <footer> Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri May 18 2018 11:25:14 GMT+0100 (BST) </footer> <script> prettyPrint(); </script> <script src="scripts/linenumber.js"> </script> </body> </html>