UNPKG

bot18

Version:

A high-frequency cryptocurrency trading bot by Zenbot creator @carlos8f

1,759 lines (1,612 loc) 48.9 kB
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>JSDoc: Source: mat4.js</title> <script src="scripts/prettify/prettify.js"> </script> <script src="scripts/prettify/lang-css.js"> </script> <!--[if lt IE 9]> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <![endif]--> <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css"> <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css"> </head> <body> <div id="main"> <h1 class="page-title">Source: mat4.js</h1> <section> <article> <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js"; /** * 4x4 Matrix&lt;br>Format: column-major, when typed out it looks like row-major&lt;br>The matrices are being post multiplied. * @module mat4 */ /** * Creates a new identity mat4 * * @returns {mat4} a new 4x4 matrix */ export function create() { let out = new glMatrix.ARRAY_TYPE(16); out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Creates a new mat4 initialized with values from an existing matrix * * @param {mat4} a matrix to clone * @returns {mat4} a new 4x4 matrix */ export function clone(a) { let out = new glMatrix.ARRAY_TYPE(16); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } /** * Copy the values from one mat4 to another * * @param {mat4} out the receiving matrix * @param {mat4} a the source matrix * @returns {mat4} out */ export function copy(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } /** * Create a new mat4 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m03 Component in column 0, row 3 position (index 3) * @param {Number} m10 Component in column 1, row 0 position (index 4) * @param {Number} m11 Component in column 1, row 1 position (index 5) * @param {Number} m12 Component in column 1, row 2 position (index 6) * @param {Number} m13 Component in column 1, row 3 position (index 7) * @param {Number} m20 Component in column 2, row 0 position (index 8) * @param {Number} m21 Component in column 2, row 1 position (index 9) * @param {Number} m22 Component in column 2, row 2 position (index 10) * @param {Number} m23 Component in column 2, row 3 position (index 11) * @param {Number} m30 Component in column 3, row 0 position (index 12) * @param {Number} m31 Component in column 3, row 1 position (index 13) * @param {Number} m32 Component in column 3, row 2 position (index 14) * @param {Number} m33 Component in column 3, row 3 position (index 15) * @returns {mat4} A new mat4 */ export function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { let out = new glMatrix.ARRAY_TYPE(16); out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m03; out[4] = m10; out[5] = m11; out[6] = m12; out[7] = m13; out[8] = m20; out[9] = m21; out[10] = m22; out[11] = m23; out[12] = m30; out[13] = m31; out[14] = m32; out[15] = m33; return out; } /** * Set the components of a mat4 to the given values * * @param {mat4} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m03 Component in column 0, row 3 position (index 3) * @param {Number} m10 Component in column 1, row 0 position (index 4) * @param {Number} m11 Component in column 1, row 1 position (index 5) * @param {Number} m12 Component in column 1, row 2 position (index 6) * @param {Number} m13 Component in column 1, row 3 position (index 7) * @param {Number} m20 Component in column 2, row 0 position (index 8) * @param {Number} m21 Component in column 2, row 1 position (index 9) * @param {Number} m22 Component in column 2, row 2 position (index 10) * @param {Number} m23 Component in column 2, row 3 position (index 11) * @param {Number} m30 Component in column 3, row 0 position (index 12) * @param {Number} m31 Component in column 3, row 1 position (index 13) * @param {Number} m32 Component in column 3, row 2 position (index 14) * @param {Number} m33 Component in column 3, row 3 position (index 15) * @returns {mat4} out */ export function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m03; out[4] = m10; out[5] = m11; out[6] = m12; out[7] = m13; out[8] = m20; out[9] = m21; out[10] = m22; out[11] = m23; out[12] = m30; out[13] = m31; out[14] = m32; out[15] = m33; return out; } /** * Set a mat4 to the identity matrix * * @param {mat4} out the receiving matrix * @returns {mat4} out */ export function identity(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Transpose the values of a mat4 * * @param {mat4} out the receiving matrix * @param {mat4} a the source matrix * @returns {mat4} out */ export function transpose(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { let a01 = a[1], a02 = a[2], a03 = a[3]; let a12 = a[6], a13 = a[7]; let a23 = a[11]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a01; out[6] = a[9]; out[7] = a[13]; out[8] = a02; out[9] = a12; out[11] = a[14]; out[12] = a03; out[13] = a13; out[14] = a23; } else { out[0] = a[0]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a[1]; out[5] = a[5]; out[6] = a[9]; out[7] = a[13]; out[8] = a[2]; out[9] = a[6]; out[10] = a[10]; out[11] = a[14]; out[12] = a[3]; out[13] = a[7]; out[14] = a[11]; out[15] = a[15]; } return out; } /** * Inverts a mat4 * * @param {mat4} out the receiving matrix * @param {mat4} a the source matrix * @returns {mat4} out */ export function invert(out, a) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; let b00 = a00 * a11 - a01 * a10; let b01 = a00 * a12 - a02 * a10; let b02 = a00 * a13 - a03 * a10; let b03 = a01 * a12 - a02 * a11; let b04 = a01 * a13 - a03 * a11; let b05 = a02 * a13 - a03 * a12; let b06 = a20 * a31 - a21 * a30; let b07 = a20 * a32 - a22 * a30; let b08 = a20 * a33 - a23 * a30; let b09 = a21 * a32 - a22 * a31; let b10 = a21 * a33 - a23 * a31; let b11 = a22 * a33 - a23 * a32; // Calculate the determinant let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { return null; } det = 1.0 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; return out; } /** * Calculates the adjugate of a mat4 * * @param {mat4} out the receiving matrix * @param {mat4} a the source matrix * @returns {mat4} out */ export function adjoint(out, a) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; out[0] = (a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22)); out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22)); out[2] = (a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12)); out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12)); out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22)); out[5] = (a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22)); out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12)); out[7] = (a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12)); out[8] = (a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21)); out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21)); out[10] = (a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11)); out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11)); out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21)); out[13] = (a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21)); out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11)); out[15] = (a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11)); return out; } /** * Calculates the determinant of a mat4 * * @param {mat4} a the source matrix * @returns {Number} determinant of a */ export function determinant(a) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; let b00 = a00 * a11 - a01 * a10; let b01 = a00 * a12 - a02 * a10; let b02 = a00 * a13 - a03 * a10; let b03 = a01 * a12 - a02 * a11; let b04 = a01 * a13 - a03 * a11; let b05 = a02 * a13 - a03 * a12; let b06 = a20 * a31 - a21 * a30; let b07 = a20 * a32 - a22 * a30; let b08 = a20 * a33 - a23 * a30; let b09 = a21 * a32 - a22 * a31; let b10 = a21 * a33 - a23 * a31; let b11 = a22 * a33 - a23 * a32; // Calculate the determinant return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; } /** * Multiplies two mat4s * * @param {mat4} out the receiving matrix * @param {mat4} a the first operand * @param {mat4} b the second operand * @returns {mat4} out */ export function multiply(out, a, b) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; // Cache only the current line of the second matrix let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33; return out; } /** * Translate a mat4 by the given vector * * @param {mat4} out the receiving matrix * @param {mat4} a the matrix to translate * @param {vec3} v vector to translate by * @returns {mat4} out */ export function translate(out, a, v) { let x = v[0], y = v[1], z = v[2]; let a00, a01, a02, a03; let a10, a11, a12, a13; let a20, a21, a22, a23; if (a === out) { out[12] = a[0] * x + a[4] * y + a[8] * z + a[12]; out[13] = a[1] * x + a[5] * y + a[9] * z + a[13]; out[14] = a[2] * x + a[6] * y + a[10] * z + a[14]; out[15] = a[3] * x + a[7] * y + a[11] * z + a[15]; } else { a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03; out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13; out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23; out[12] = a00 * x + a10 * y + a20 * z + a[12]; out[13] = a01 * x + a11 * y + a21 * z + a[13]; out[14] = a02 * x + a12 * y + a22 * z + a[14]; out[15] = a03 * x + a13 * y + a23 * z + a[15]; } return out; } /** * Scales the mat4 by the dimensions in the given vec3 not using vectorization * * @param {mat4} out the receiving matrix * @param {mat4} a the matrix to scale * @param {vec3} v the vec3 to scale the matrix by * @returns {mat4} out **/ export function scale(out, a, v) { let x = v[0], y = v[1], z = v[2]; out[0] = a[0] * x; out[1] = a[1] * x; out[2] = a[2] * x; out[3] = a[3] * x; out[4] = a[4] * y; out[5] = a[5] * y; out[6] = a[6] * y; out[7] = a[7] * y; out[8] = a[8] * z; out[9] = a[9] * z; out[10] = a[10] * z; out[11] = a[11] * z; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } /** * Rotates a mat4 by the given angle around the given axis * * @param {mat4} out the receiving matrix * @param {mat4} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @param {vec3} axis the axis to rotate around * @returns {mat4} out */ export function rotate(out, a, rad, axis) { let x = axis[0], y = axis[1], z = axis[2]; let len = Math.sqrt(x * x + y * y + z * z); let s, c, t; let a00, a01, a02, a03; let a10, a11, a12, a13; let a20, a21, a22, a23; let b00, b01, b02; let b10, b11, b12; let b20, b21, b22; if (len &lt; glMatrix.EPSILON) { return null; } len = 1 / len; x *= len; y *= len; z *= len; s = Math.sin(rad); c = Math.cos(rad); t = 1 - c; a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; // Construct the elements of the rotation matrix b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s; b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s; b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c; // Perform rotation-specific matrix multiplication out[0] = a00 * b00 + a10 * b01 + a20 * b02; out[1] = a01 * b00 + a11 * b01 + a21 * b02; out[2] = a02 * b00 + a12 * b01 + a22 * b02; out[3] = a03 * b00 + a13 * b01 + a23 * b02; out[4] = a00 * b10 + a10 * b11 + a20 * b12; out[5] = a01 * b10 + a11 * b11 + a21 * b12; out[6] = a02 * b10 + a12 * b11 + a22 * b12; out[7] = a03 * b10 + a13 * b11 + a23 * b12; out[8] = a00 * b20 + a10 * b21 + a20 * b22; out[9] = a01 * b20 + a11 * b21 + a21 * b22; out[10] = a02 * b20 + a12 * b21 + a22 * b22; out[11] = a03 * b20 + a13 * b21 + a23 * b22; if (a !== out) { // If the source and destination differ, copy the unchanged last row out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } return out; } /** * Rotates a matrix by the given angle around the X axis * * @param {mat4} out the receiving matrix * @param {mat4} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ export function rotateX(out, a, rad) { let s = Math.sin(rad); let c = Math.cos(rad); let a10 = a[4]; let a11 = a[5]; let a12 = a[6]; let a13 = a[7]; let a20 = a[8]; let a21 = a[9]; let a22 = a[10]; let a23 = a[11]; if (a !== out) { // If the source and destination differ, copy the unchanged rows out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } // Perform axis-specific matrix multiplication out[4] = a10 * c + a20 * s; out[5] = a11 * c + a21 * s; out[6] = a12 * c + a22 * s; out[7] = a13 * c + a23 * s; out[8] = a20 * c - a10 * s; out[9] = a21 * c - a11 * s; out[10] = a22 * c - a12 * s; out[11] = a23 * c - a13 * s; return out; } /** * Rotates a matrix by the given angle around the Y axis * * @param {mat4} out the receiving matrix * @param {mat4} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ export function rotateY(out, a, rad) { let s = Math.sin(rad); let c = Math.cos(rad); let a00 = a[0]; let a01 = a[1]; let a02 = a[2]; let a03 = a[3]; let a20 = a[8]; let a21 = a[9]; let a22 = a[10]; let a23 = a[11]; if (a !== out) { // If the source and destination differ, copy the unchanged rows out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } // Perform axis-specific matrix multiplication out[0] = a00 * c - a20 * s; out[1] = a01 * c - a21 * s; out[2] = a02 * c - a22 * s; out[3] = a03 * c - a23 * s; out[8] = a00 * s + a20 * c; out[9] = a01 * s + a21 * c; out[10] = a02 * s + a22 * c; out[11] = a03 * s + a23 * c; return out; } /** * Rotates a matrix by the given angle around the Z axis * * @param {mat4} out the receiving matrix * @param {mat4} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ export function rotateZ(out, a, rad) { let s = Math.sin(rad); let c = Math.cos(rad); let a00 = a[0]; let a01 = a[1]; let a02 = a[2]; let a03 = a[3]; let a10 = a[4]; let a11 = a[5]; let a12 = a[6]; let a13 = a[7]; if (a !== out) { // If the source and destination differ, copy the unchanged last row out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } // Perform axis-specific matrix multiplication out[0] = a00 * c + a10 * s; out[1] = a01 * c + a11 * s; out[2] = a02 * c + a12 * s; out[3] = a03 * c + a13 * s; out[4] = a10 * c - a00 * s; out[5] = a11 * c - a01 * s; out[6] = a12 * c - a02 * s; out[7] = a13 * c - a03 * s; return out; } /** * Creates a matrix from a vector translation * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.translate(dest, dest, vec); * * @param {mat4} out mat4 receiving operation result * @param {vec3} v Translation vector * @returns {mat4} out */ export function fromTranslation(out, v) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; out[15] = 1; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.scale(dest, dest, vec); * * @param {mat4} out mat4 receiving operation result * @param {vec3} v Scaling vector * @returns {mat4} out */ export function fromScaling(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = v[1]; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = v[2]; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Creates a matrix from a given angle around a given axis * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.rotate(dest, dest, rad, axis); * * @param {mat4} out mat4 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @param {vec3} axis the axis to rotate around * @returns {mat4} out */ export function fromRotation(out, rad, axis) { let x = axis[0], y = axis[1], z = axis[2]; let len = Math.sqrt(x * x + y * y + z * z); let s, c, t; if (len &lt; glMatrix.EPSILON) { return null; } len = 1 / len; x *= len; y *= len; z *= len; s = Math.sin(rad); c = Math.cos(rad); t = 1 - c; // Perform rotation-specific matrix multiplication out[0] = x * x * t + c; out[1] = y * x * t + z * s; out[2] = z * x * t - y * s; out[3] = 0; out[4] = x * y * t - z * s; out[5] = y * y * t + c; out[6] = z * y * t + x * s; out[7] = 0; out[8] = x * z * t + y * s; out[9] = y * z * t - x * s; out[10] = z * z * t + c; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Creates a matrix from the given angle around the X axis * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.rotateX(dest, dest, rad); * * @param {mat4} out mat4 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ export function fromXRotation(out, rad) { let s = Math.sin(rad); let c = Math.cos(rad); // Perform axis-specific matrix multiplication out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = c; out[6] = s; out[7] = 0; out[8] = 0; out[9] = -s; out[10] = c; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Creates a matrix from the given angle around the Y axis * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.rotateY(dest, dest, rad); * * @param {mat4} out mat4 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ export function fromYRotation(out, rad) { let s = Math.sin(rad); let c = Math.cos(rad); // Perform axis-specific matrix multiplication out[0] = c; out[1] = 0; out[2] = -s; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = s; out[9] = 0; out[10] = c; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Creates a matrix from the given angle around the Z axis * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.rotateZ(dest, dest, rad); * * @param {mat4} out mat4 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat4} out */ export function fromZRotation(out, rad) { let s = Math.sin(rad); let c = Math.cos(rad); // Perform axis-specific matrix multiplication out[0] = c; out[1] = s; out[2] = 0; out[3] = 0; out[4] = -s; out[5] = c; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Creates a matrix from a quaternion rotation and vector translation * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.translate(dest, vec); * let quatMat = mat4.create(); * quat4.toMat4(quat, quatMat); * mat4.multiply(dest, quatMat); * * @param {mat4} out mat4 receiving operation result * @param {quat4} q Rotation quaternion * @param {vec3} v Translation vector * @returns {mat4} out */ export function fromRotationTranslation(out, q, v) { // Quaternion math let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; let y2 = y + y; let z2 = z + z; let xx = x * x2; let xy = x * y2; let xz = x * z2; let yy = y * y2; let yz = y * z2; let zz = z * z2; let wx = w * x2; let wy = w * y2; let wz = w * z2; out[0] = 1 - (yy + zz); out[1] = xy + wz; out[2] = xz - wy; out[3] = 0; out[4] = xy - wz; out[5] = 1 - (xx + zz); out[6] = yz + wx; out[7] = 0; out[8] = xz + wy; out[9] = yz - wx; out[10] = 1 - (xx + yy); out[11] = 0; out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; out[15] = 1; return out; } /** * Creates a new mat4 from a dual quat. * * @param {mat4} out Matrix * @param {quat2} a Dual Quaternion * @returns {mat4} mat4 receiving operation result */ export function fromQuat2(out, a) { let translation = new glMatrix.ARRAY_TYPE(3); let bx = -a[0], by = -a[1], bz = -a[2], bw = a[3], ax = a[4], ay = a[5], az = a[6], aw = a[7]; let magnitude = bx * bx + by * by + bz * bz + bw * bw; //Only scale if it makes sense if (magnitude > 0) { translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2 / magnitude; translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2 / magnitude; translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2 / magnitude; } else { translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2; translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2; translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2; } fromRotationTranslation(out, a, translation); return out; } /** * Returns the translation vector component of a transformation * matrix. If a matrix is built with fromRotationTranslation, * the returned vector will be the same as the translation vector * originally supplied. * @param {vec3} out Vector to receive translation component * @param {mat4} mat Matrix to be decomposed (input) * @return {vec3} out */ export function getTranslation(out, mat) { out[0] = mat[12]; out[1] = mat[13]; out[2] = mat[14]; return out; } /** * Returns the scaling factor component of a transformation * matrix. If a matrix is built with fromRotationTranslationScale * with a normalized Quaternion paramter, the returned vector will be * the same as the scaling vector * originally supplied. * @param {vec3} out Vector to receive scaling factor component * @param {mat4} mat Matrix to be decomposed (input) * @return {vec3} out */ export function getScaling(out, mat) { let m11 = mat[0]; let m12 = mat[1]; let m13 = mat[2]; let m21 = mat[4]; let m22 = mat[5]; let m23 = mat[6]; let m31 = mat[8]; let m32 = mat[9]; let m33 = mat[10]; out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13); out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23); out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33); return out; } /** * Returns a quaternion representing the rotational component * of a transformation matrix. If a matrix is built with * fromRotationTranslation, the returned quaternion will be the * same as the quaternion originally supplied. * @param {quat} out Quaternion to receive the rotation component * @param {mat4} mat Matrix to be decomposed (input) * @return {quat} out */ export function getRotation(out, mat) { // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm let trace = mat[0] + mat[5] + mat[10]; let S = 0; if (trace > 0) { S = Math.sqrt(trace + 1.0) * 2; out[3] = 0.25 * S; out[0] = (mat[6] - mat[9]) / S; out[1] = (mat[8] - mat[2]) / S; out[2] = (mat[1] - mat[4]) / S; } else if ((mat[0] > mat[5]) &amp;&amp; (mat[0] > mat[10])) { S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2; out[3] = (mat[6] - mat[9]) / S; out[0] = 0.25 * S; out[1] = (mat[1] + mat[4]) / S; out[2] = (mat[8] + mat[2]) / S; } else if (mat[5] > mat[10]) { S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2; out[3] = (mat[8] - mat[2]) / S; out[0] = (mat[1] + mat[4]) / S; out[1] = 0.25 * S; out[2] = (mat[6] + mat[9]) / S; } else { S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2; out[3] = (mat[1] - mat[4]) / S; out[0] = (mat[8] + mat[2]) / S; out[1] = (mat[6] + mat[9]) / S; out[2] = 0.25 * S; } return out; } /** * Creates a matrix from a quaternion rotation, vector translation and vector scale * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.translate(dest, vec); * let quatMat = mat4.create(); * quat4.toMat4(quat, quatMat); * mat4.multiply(dest, quatMat); * mat4.scale(dest, scale) * * @param {mat4} out mat4 receiving operation result * @param {quat4} q Rotation quaternion * @param {vec3} v Translation vector * @param {vec3} s Scaling vector * @returns {mat4} out */ export function fromRotationTranslationScale(out, q, v, s) { // Quaternion math let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; let y2 = y + y; let z2 = z + z; let xx = x * x2; let xy = x * y2; let xz = x * z2; let yy = y * y2; let yz = y * z2; let zz = z * z2; let wx = w * x2; let wy = w * y2; let wz = w * z2; let sx = s[0]; let sy = s[1]; let sz = s[2]; out[0] = (1 - (yy + zz)) * sx; out[1] = (xy + wz) * sx; out[2] = (xz - wy) * sx; out[3] = 0; out[4] = (xy - wz) * sy; out[5] = (1 - (xx + zz)) * sy; out[6] = (yz + wx) * sy; out[7] = 0; out[8] = (xz + wy) * sz; out[9] = (yz - wx) * sz; out[10] = (1 - (xx + yy)) * sz; out[11] = 0; out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; out[15] = 1; return out; } /** * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.translate(dest, vec); * mat4.translate(dest, origin); * let quatMat = mat4.create(); * quat4.toMat4(quat, quatMat); * mat4.multiply(dest, quatMat); * mat4.scale(dest, scale) * mat4.translate(dest, negativeOrigin); * * @param {mat4} out mat4 receiving operation result * @param {quat4} q Rotation quaternion * @param {vec3} v Translation vector * @param {vec3} s Scaling vector * @param {vec3} o The origin vector around which to scale and rotate * @returns {mat4} out */ export function fromRotationTranslationScaleOrigin(out, q, v, s, o) { // Quaternion math let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; let y2 = y + y; let z2 = z + z; let xx = x * x2; let xy = x * y2; let xz = x * z2; let yy = y * y2; let yz = y * z2; let zz = z * z2; let wx = w * x2; let wy = w * y2; let wz = w * z2; let sx = s[0]; let sy = s[1]; let sz = s[2]; let ox = o[0]; let oy = o[1]; let oz = o[2]; let out0 = (1 - (yy + zz)) * sx; let out1 = (xy + wz) * sx; let out2 = (xz - wy) * sx; let out4 = (xy - wz) * sy; let out5 = (1 - (xx + zz)) * sy; let out6 = (yz + wx) * sy; let out8 = (xz + wy) * sz; let out9 = (yz - wx) * sz; let out10 = (1 - (xx + yy)) * sz; out[0] = out0; out[1] = out1; out[2] = out2; out[3] = 0; out[4] = out4; out[5] = out5; out[6] = out6; out[7] = 0; out[8] = out8; out[9] = out9; out[10] = out10; out[11] = 0; out[12] = v[0] + ox - (out0 * ox + out4 * oy + out8 * oz); out[13] = v[1] + oy - (out1 * ox + out5 * oy + out9 * oz); out[14] = v[2] + oz - (out2 * ox + out6 * oy + out10 * oz); out[15] = 1; return out; } /** * Calculates a 4x4 matrix from the given quaternion * * @param {mat4} out mat4 receiving operation result * @param {quat} q Quaternion to create matrix from * * @returns {mat4} out */ export function fromQuat(out, q) { let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; let y2 = y + y; let z2 = z + z; let xx = x * x2; let yx = y * x2; let yy = y * y2; let zx = z * x2; let zy = z * y2; let zz = z * z2; let wx = w * x2; let wy = w * y2; let wz = w * z2; out[0] = 1 - yy - zz; out[1] = yx + wz; out[2] = zx - wy; out[3] = 0; out[4] = yx - wz; out[5] = 1 - xx - zz; out[6] = zy + wx; out[7] = 0; out[8] = zx + wy; out[9] = zy - wx; out[10] = 1 - xx - yy; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Generates a frustum matrix with the given bounds * * @param {mat4} out mat4 frustum matrix will be written into * @param {Number} left Left bound of the frustum * @param {Number} right Right bound of the frustum * @param {Number} bottom Bottom bound of the frustum * @param {Number} top Top bound of the frustum * @param {Number} near Near bound of the frustum * @param {Number} far Far bound of the frustum * @returns {mat4} out */ export function frustum(out, left, right, bottom, top, near, far) { let rl = 1 / (right - left); let tb = 1 / (top - bottom); let nf = 1 / (near - far); out[0] = (near * 2) * rl; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = (near * 2) * tb; out[6] = 0; out[7] = 0; out[8] = (right + left) * rl; out[9] = (top + bottom) * tb; out[10] = (far + near) * nf; out[11] = -1; out[12] = 0; out[13] = 0; out[14] = (far * near * 2) * nf; out[15] = 0; return out; } /** * Generates a perspective projection matrix with the given bounds * * @param {mat4} out mat4 frustum matrix will be written into * @param {number} fovy Vertical field of view in radians * @param {number} aspect Aspect ratio. typically viewport width/height * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum * @returns {mat4} out */ export function perspective(out, fovy, aspect, near, far) { let f = 1.0 / Math.tan(fovy / 2); let nf = 1 / (near - far); out[0] = f / aspect; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = f; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = (far + near) * nf; out[11] = -1; out[12] = 0; out[13] = 0; out[14] = (2 * far * near) * nf; out[15] = 0; return out; } /** * Generates a perspective projection matrix with the given field of view. * This is primarily useful for generating projection matrices to be used * with the still experiemental WebVR API. * * @param {mat4} out mat4 frustum matrix will be written into * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum * @returns {mat4} out */ export function perspectiveFromFieldOfView(out, fov, near, far) { let upTan = Math.tan(fov.upDegrees * Math.PI/180.0); let downTan = Math.tan(fov.downDegrees * Math.PI/180.0); let leftTan = Math.tan(fov.leftDegrees * Math.PI/180.0); let rightTan = Math.tan(fov.rightDegrees * Math.PI/180.0); let xScale = 2.0 / (leftTan + rightTan); let yScale = 2.0 / (upTan + downTan); out[0] = xScale; out[1] = 0.0; out[2] = 0.0; out[3] = 0.0; out[4] = 0.0; out[5] = yScale; out[6] = 0.0; out[7] = 0.0; out[8] = -((leftTan - rightTan) * xScale * 0.5); out[9] = ((upTan - downTan) * yScale * 0.5); out[10] = far / (near - far); out[11] = -1.0; out[12] = 0.0; out[13] = 0.0; out[14] = (far * near) / (near - far); out[15] = 0.0; return out; } /** * Generates a orthogonal projection matrix with the given bounds * * @param {mat4} out mat4 frustum matrix will be written into * @param {number} left Left bound of the frustum * @param {number} right Right bound of the frustum * @param {number} bottom Bottom bound of the frustum * @param {number} top Top bound of the frustum * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum * @returns {mat4} out */ export function ortho(out, left, right, bottom, top, near, far) { let lr = 1 / (left - right); let bt = 1 / (bottom - top); let nf = 1 / (near - far); out[0] = -2 * lr; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = -2 * bt; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 2 * nf; out[11] = 0; out[12] = (left + right) * lr; out[13] = (top + bottom) * bt; out[14] = (far + near) * nf; out[15] = 1; return out; } /** * Generates a look-at matrix with the given eye position, focal point, and up axis. * If you want a matrix that actually makes an object look at another object, you should use targetTo instead. * * @param {mat4} out mat4 frustum matrix will be written into * @param {vec3} eye Position of the viewer * @param {vec3} center Point the viewer is looking at * @param {vec3} up vec3 pointing up * @returns {mat4} out */ export function lookAt(out, eye, center, up) { let x0, x1, x2, y0, y1, y2, z0, z1, z2, len; let eyex = eye[0]; let eyey = eye[1]; let eyez = eye[2]; let upx = up[0]; let upy = up[1]; let upz = up[2]; let centerx = center[0]; let centery = center[1]; let centerz = center[2]; if (Math.abs(eyex - centerx) &lt; glMatrix.EPSILON &amp;&amp; Math.abs(eyey - centery) &lt; glMatrix.EPSILON &amp;&amp; Math.abs(eyez - centerz) &lt; glMatrix.EPSILON) { return identity(out); } z0 = eyex - centerx; z1 = eyey - centery; z2 = eyez - centerz; len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); z0 *= len; z1 *= len; z2 *= len; x0 = upy * z2 - upz * z1; x1 = upz * z0 - upx * z2; x2 = upx * z1 - upy * z0; len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); if (!len) { x0 = 0; x1 = 0; x2 = 0; } else { len = 1 / len; x0 *= len; x1 *= len; x2 *= len; } y0 = z1 * x2 - z2 * x1; y1 = z2 * x0 - z0 * x2; y2 = z0 * x1 - z1 * x0; len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); if (!len) { y0 = 0; y1 = 0; y2 = 0; } else { len = 1 / len; y0 *= len; y1 *= len; y2 *= len; } out[0] = x0; out[1] = y0; out[2] = z0; out[3] = 0; out[4] = x1; out[5] = y1; out[6] = z1; out[7] = 0; out[8] = x2; out[9] = y2; out[10] = z2; out[11] = 0; out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); out[15] = 1; return out; } /** * Generates a matrix that makes something look at something else. * * @param {mat4} out mat4 frustum matrix will be written into * @param {vec3} eye Position of the viewer * @param {vec3} center Point the viewer is looking at * @param {vec3} up vec3 pointing up * @returns {mat4} out */ export function targetTo(out, eye, target, up) { let eyex = eye[0], eyey = eye[1], eyez = eye[2], upx = up[0], upy = up[1], upz = up[2]; let z0 = eyex - target[0], z1 = eyey - target[1], z2 = eyez - target[2]; let len = z0*z0 + z1*z1 + z2*z2; if (len > 0) { len = 1 / Math.sqrt(len); z0 *= len; z1 *= len; z2 *= len; } let x0 = upy * z2 - upz * z1, x1 = upz * z0 - upx * z2, x2 = upx * z1 - upy * z0; len = x0*x0 + x1*x1 + x2*x2; if (len > 0) { len = 1 / Math.sqrt(len); x0 *= len; x1 *= len; x2 *= len; } out[0] = x0; out[1] = x1; out[2] = x2; out[3] = 0; out[4] = z1 * x2 - z2 * x1; out[5] = z2 * x0 - z0 * x2; out[6] = z0 * x1 - z1 * x0; out[7] = 0; out[8] = z0; out[9] = z1; out[10] = z2; out[11] = 0; out[12] = eyex; out[13] = eyey; out[14] = eyez; out[15] = 1; return out; }; /** * Returns a string representation of a mat4 * * @param {mat4} a matrix to represent as a string * @returns {String} string representation of the matrix */ export function str(a) { return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')'; } /** * Returns Frobenius norm of a mat4 * * @param {mat4} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ export function frob(a) { return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2) )) } /** * Adds two mat4's * * @param {mat4} out the receiving matrix * @param {mat4} a the first operand * @param {mat4} b the second operand * @returns {mat4} out */ export function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; out[6] = a[6] + b[6]; out[7] = a[7] + b[7]; out[8] = a[8] + b[8]; out[9] = a[9] + b[9]; out[10] = a[10] + b[10]; out[11] = a[11] + b[11]; out[12] = a[12] + b[12]; out[13] = a[13] + b[13]; out[14] = a[14] + b[14]; out[15] = a[15] + b[15]; return out; } /** * Subtracts matrix b from matrix a * * @param {mat4} out the receiving matrix * @param {mat4} a the first operand * @param {mat4} b the second operand * @returns {mat4} out */ export function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; out[4] = a[4] - b[4]; out[5] = a[5] - b[5]; out[6] = a[6] - b[6]; out[7] = a[7] - b[7]; out[8] = a[8] - b[8]; out[9] = a[9] - b[9]; out[10] = a[10] - b[10]; out[11] = a[11] - b[11]; out[12] = a[12] - b[12]; out[13] = a[13] - b[13]; out[14] = a[14] - b[14]; out[15] = a[15] - b[15]; return out; } /** * Multiply each element of the matrix by a scalar. * * @param {mat4} out the receiving matrix * @param {mat4} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat4} out */ export function multiplyScalar(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; out[4] = a[4] * b; out[5] = a[5] * b; out[6] = a[6] * b; out[7] = a[7] * b; out[8] = a[8] * b; out[9] = a[9] * b; out[10] = a[10] * b; out[11] = a[11] * b; out[12] = a[12] * b; out[13] = a[13] * b; out[14] = a[14] * b; out[15] = a[15] * b; return out; } /** * Adds two mat4's after multiplying each element of the second operand by a scalar value. * * @param {mat4} out the receiving vector * @param {mat4} a the first operand * @param {mat4} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat4} out */ export function multiplyScalarAndAdd(out, a, b, scale) { out[0] = a[0] + (b[0] * scale); out[1] = a[1] + (b[1] * scale); out[2] = a[2] + (b[2] * scale); out[3] = a[3] + (b[3] * scale); out[4] = a[4] + (b[4] * scale); out[5] = a[5] + (b[5] * scale); out[6] = a[6] + (b[6] * scale); out[7] = a[7] + (b[7] * scale); out[8] = a[8] + (b[8] * scale); out[9] = a[9] + (b[9] * scale); out[10] = a[10] + (b[10] * scale); out[11] = a[11] + (b[11] * scale); out[12] = a[12] + (b[12] * scale); out[13] = a[13] + (b[13] * scale); out[14] = a[14] + (b[14] * scale); out[15] = a[15] + (b[15] * scale); return out; } /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {mat4} a The first matrix. * @param {mat4} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ export function exactEquals(a, b) { return a[0] === b[0] &amp;&amp; a[1] === b[1] &amp;&amp; a[2] === b[2] &amp;&amp; a[3] === b[3] &amp;&amp; a[4] === b[4] &amp;&amp; a[5] === b[5] &amp;&amp; a[6] === b[6] &amp;&amp; a[7] === b[7] &amp;&amp; a[8] === b[8] &amp;&amp; a[9] === b[9] &amp;&amp; a[10] === b[10] &amp;&amp; a[11] === b[11] &amp;&amp; a[12] === b[12] &amp;&amp; a[13] === b[13] &amp;&amp; a[14] === b[14] &amp;&amp; a[15] === b[15]; } /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {mat4} a The first matrix. * @param {mat4} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ export function equals(a, b) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; let a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7]; let a8 = a[8], a9 = a[9], a10 = a[10], a11 = a[11]; let a12 = a[12], a13 = a[13], a14 = a[14], a15 = a[15]; let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; let b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7]; let b8 = b[8], b9 = b[9], b10 = b[10], b11 = b[11]; let b12 = b[12], b13 = b[13], b14 = b[14], b15 = b[15]; return (Math.abs(a0 - b0) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &amp;&amp; Math.abs(a1 - b1) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) &amp;&amp; Math.abs(a2 - b2) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)) &amp;&amp; Math.abs(a3 - b3) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a3), Math.abs(b3)) &amp;&amp; Math.abs(a4 - b4) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a4), Math.abs(b4)) &amp;&amp; Math.abs(a5 - b5) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a5), Math.abs(b5)) &amp;&amp; Math.abs(a6 - b6) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a6), Math.abs(b6)) &amp;&amp; Math.abs(a7 - b7) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a7), Math.abs(b7)) &amp;&amp; Math.abs(a8 - b8) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a8), Math.abs(b8)) &amp;&amp; Math.abs(a9 - b9) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a9), Math.abs(b9)) &amp;&amp; Math.abs(a10 - b10) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a10), Math.abs(b10)) &amp;&amp; Math.abs(a11 - b11) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a11), Math.abs(b11)) &amp;&amp; Math.abs(a12 - b12) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a12), Math.abs(b12)) &amp;&amp; Math.abs(a13 - b13) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a13), Math.abs(b13)) &amp;&amp; Math.abs(a14 - b14) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a14), Math.abs(b14)) &amp;&amp; Math.abs(a15 - b15) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a15), Math.abs(b15))); } /** * Alias for {@link mat4.multiply} * @function */ export const mul = multiply; /** * Alias for {@link mat4.subtract} * @function */ export const sub = subtract; </code></pre> </article> </section> </div> <nav> <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul> </nav> <br class="clear"> <footer> Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri May 18 2018 11:25:14 GMT+0100 (BST) </footer> <script> prettyPrint(); </script> <script src="scripts/linenumber.js"> </script> </body> </html>