UNPKG

bot18

Version:

A high-frequency cryptocurrency trading bot by Zenbot creator @carlos8f

797 lines (703 loc) 20.1 kB
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>JSDoc: Source: mat3.js</title> <script src="scripts/prettify/prettify.js"> </script> <script src="scripts/prettify/lang-css.js"> </script> <!--[if lt IE 9]> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <![endif]--> <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css"> <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css"> </head> <body> <div id="main"> <h1 class="page-title">Source: mat3.js</h1> <section> <article> <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js"; /** * 3x3 Matrix * @module mat3 */ /** * Creates a new identity mat3 * * @returns {mat3} a new 3x3 matrix */ export function create() { let out = new glMatrix.ARRAY_TYPE(9); out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Copies the upper-left 3x3 values into the given mat3. * * @param {mat3} out the receiving 3x3 matrix * @param {mat4} a the source 4x4 matrix * @returns {mat3} out */ export function fromMat4(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[4]; out[4] = a[5]; out[5] = a[6]; out[6] = a[8]; out[7] = a[9]; out[8] = a[10]; return out; } /** * Creates a new mat3 initialized with values from an existing matrix * * @param {mat3} a matrix to clone * @returns {mat3} a new 3x3 matrix */ export function clone(a) { let out = new glMatrix.ARRAY_TYPE(9); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; } /** * Copy the values from one mat3 to another * * @param {mat3} out the receiving matrix * @param {mat3} a the source matrix * @returns {mat3} out */ export function copy(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; } /** * Create a new mat3 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m10 Component in column 1, row 0 position (index 3) * @param {Number} m11 Component in column 1, row 1 position (index 4) * @param {Number} m12 Component in column 1, row 2 position (index 5) * @param {Number} m20 Component in column 2, row 0 position (index 6) * @param {Number} m21 Component in column 2, row 1 position (index 7) * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} A new mat3 */ export function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) { let out = new glMatrix.ARRAY_TYPE(9); out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m10; out[4] = m11; out[5] = m12; out[6] = m20; out[7] = m21; out[8] = m22; return out; } /** * Set the components of a mat3 to the given values * * @param {mat3} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m10 Component in column 1, row 0 position (index 3) * @param {Number} m11 Component in column 1, row 1 position (index 4) * @param {Number} m12 Component in column 1, row 2 position (index 5) * @param {Number} m20 Component in column 2, row 0 position (index 6) * @param {Number} m21 Component in column 2, row 1 position (index 7) * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} out */ export function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) { out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m10; out[4] = m11; out[5] = m12; out[6] = m20; out[7] = m21; out[8] = m22; return out; } /** * Set a mat3 to the identity matrix * * @param {mat3} out the receiving matrix * @returns {mat3} out */ export function identity(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Transpose the values of a mat3 * * @param {mat3} out the receiving matrix * @param {mat3} a the source matrix * @returns {mat3} out */ export function transpose(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { let a01 = a[1], a02 = a[2], a12 = a[5]; out[1] = a[3]; out[2] = a[6]; out[3] = a01; out[5] = a[7]; out[6] = a02; out[7] = a12; } else { out[0] = a[0]; out[1] = a[3]; out[2] = a[6]; out[3] = a[1]; out[4] = a[4]; out[5] = a[7]; out[6] = a[2]; out[7] = a[5]; out[8] = a[8]; } return out; } /** * Inverts a mat3 * * @param {mat3} out the receiving matrix * @param {mat3} a the source matrix * @returns {mat3} out */ export function invert(out, a) { let a00 = a[0], a01 = a[1], a02 = a[2]; let a10 = a[3], a11 = a[4], a12 = a[5]; let a20 = a[6], a21 = a[7], a22 = a[8]; let b01 = a22 * a11 - a12 * a21; let b11 = -a22 * a10 + a12 * a20; let b21 = a21 * a10 - a11 * a20; // Calculate the determinant let det = a00 * b01 + a01 * b11 + a02 * b21; if (!det) { return null; } det = 1.0 / det; out[0] = b01 * det; out[1] = (-a22 * a01 + a02 * a21) * det; out[2] = (a12 * a01 - a02 * a11) * det; out[3] = b11 * det; out[4] = (a22 * a00 - a02 * a20) * det; out[5] = (-a12 * a00 + a02 * a10) * det; out[6] = b21 * det; out[7] = (-a21 * a00 + a01 * a20) * det; out[8] = (a11 * a00 - a01 * a10) * det; return out; } /** * Calculates the adjugate of a mat3 * * @param {mat3} out the receiving matrix * @param {mat3} a the source matrix * @returns {mat3} out */ export function adjoint(out, a) { let a00 = a[0], a01 = a[1], a02 = a[2]; let a10 = a[3], a11 = a[4], a12 = a[5]; let a20 = a[6], a21 = a[7], a22 = a[8]; out[0] = (a11 * a22 - a12 * a21); out[1] = (a02 * a21 - a01 * a22); out[2] = (a01 * a12 - a02 * a11); out[3] = (a12 * a20 - a10 * a22); out[4] = (a00 * a22 - a02 * a20); out[5] = (a02 * a10 - a00 * a12); out[6] = (a10 * a21 - a11 * a20); out[7] = (a01 * a20 - a00 * a21); out[8] = (a00 * a11 - a01 * a10); return out; } /** * Calculates the determinant of a mat3 * * @param {mat3} a the source matrix * @returns {Number} determinant of a */ export function determinant(a) { let a00 = a[0], a01 = a[1], a02 = a[2]; let a10 = a[3], a11 = a[4], a12 = a[5]; let a20 = a[6], a21 = a[7], a22 = a[8]; return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20); } /** * Multiplies two mat3's * * @param {mat3} out the receiving matrix * @param {mat3} a the first operand * @param {mat3} b the second operand * @returns {mat3} out */ export function multiply(out, a, b) { let a00 = a[0], a01 = a[1], a02 = a[2]; let a10 = a[3], a11 = a[4], a12 = a[5]; let a20 = a[6], a21 = a[7], a22 = a[8]; let b00 = b[0], b01 = b[1], b02 = b[2]; let b10 = b[3], b11 = b[4], b12 = b[5]; let b20 = b[6], b21 = b[7], b22 = b[8]; out[0] = b00 * a00 + b01 * a10 + b02 * a20; out[1] = b00 * a01 + b01 * a11 + b02 * a21; out[2] = b00 * a02 + b01 * a12 + b02 * a22; out[3] = b10 * a00 + b11 * a10 + b12 * a20; out[4] = b10 * a01 + b11 * a11 + b12 * a21; out[5] = b10 * a02 + b11 * a12 + b12 * a22; out[6] = b20 * a00 + b21 * a10 + b22 * a20; out[7] = b20 * a01 + b21 * a11 + b22 * a21; out[8] = b20 * a02 + b21 * a12 + b22 * a22; return out; } /** * Translate a mat3 by the given vector * * @param {mat3} out the receiving matrix * @param {mat3} a the matrix to translate * @param {vec2} v vector to translate by * @returns {mat3} out */ export function translate(out, a, v) { let a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], x = v[0], y = v[1]; out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a10; out[4] = a11; out[5] = a12; out[6] = x * a00 + y * a10 + a20; out[7] = x * a01 + y * a11 + a21; out[8] = x * a02 + y * a12 + a22; return out; } /** * Rotates a mat3 by the given angle * * @param {mat3} out the receiving matrix * @param {mat3} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ export function rotate(out, a, rad) { let a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], s = Math.sin(rad), c = Math.cos(rad); out[0] = c * a00 + s * a10; out[1] = c * a01 + s * a11; out[2] = c * a02 + s * a12; out[3] = c * a10 - s * a00; out[4] = c * a11 - s * a01; out[5] = c * a12 - s * a02; out[6] = a20; out[7] = a21; out[8] = a22; return out; }; /** * Scales the mat3 by the dimensions in the given vec2 * * @param {mat3} out the receiving matrix * @param {mat3} a the matrix to rotate * @param {vec2} v the vec2 to scale the matrix by * @returns {mat3} out **/ export function scale(out, a, v) { let x = v[0], y = v[1]; out[0] = x * a[0]; out[1] = x * a[1]; out[2] = x * a[2]; out[3] = y * a[3]; out[4] = y * a[4]; out[5] = y * a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; } /** * Creates a matrix from a vector translation * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.translate(dest, dest, vec); * * @param {mat3} out mat3 receiving operation result * @param {vec2} v Translation vector * @returns {mat3} out */ export function fromTranslation(out, v) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = v[0]; out[7] = v[1]; out[8] = 1; return out; } /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.rotate(dest, dest, rad); * * @param {mat3} out mat3 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ export function fromRotation(out, rad) { let s = Math.sin(rad), c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = 0; out[3] = -s; out[4] = c; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.scale(dest, dest, vec); * * @param {mat3} out mat3 receiving operation result * @param {vec2} v Scaling vector * @returns {mat3} out */ export function fromScaling(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = v[1]; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Copies the values from a mat2d into a mat3 * * @param {mat3} out the receiving matrix * @param {mat2d} a the matrix to copy * @returns {mat3} out **/ export function fromMat2d(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = 0; out[3] = a[2]; out[4] = a[3]; out[5] = 0; out[6] = a[4]; out[7] = a[5]; out[8] = 1; return out; } /** * Calculates a 3x3 matrix from the given quaternion * * @param {mat3} out mat3 receiving operation result * @param {quat} q Quaternion to create matrix from * * @returns {mat3} out */ export function fromQuat(out, q) { let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; let y2 = y + y; let z2 = z + z; let xx = x * x2; let yx = y * x2; let yy = y * y2; let zx = z * x2; let zy = z * y2; let zz = z * z2; let wx = w * x2; let wy = w * y2; let wz = w * z2; out[0] = 1 - yy - zz; out[3] = yx - wz; out[6] = zx + wy; out[1] = yx + wz; out[4] = 1 - xx - zz; out[7] = zy - wx; out[2] = zx - wy; out[5] = zy + wx; out[8] = 1 - xx - yy; return out; } /** * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix * * @param {mat3} out mat3 receiving operation result * @param {mat4} a Mat4 to derive the normal matrix from * * @returns {mat3} out */ export function normalFromMat4(out, a) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; let b00 = a00 * a11 - a01 * a10; let b01 = a00 * a12 - a02 * a10; let b02 = a00 * a13 - a03 * a10; let b03 = a01 * a12 - a02 * a11; let b04 = a01 * a13 - a03 * a11; let b05 = a02 * a13 - a03 * a12; let b06 = a20 * a31 - a21 * a30; let b07 = a20 * a32 - a22 * a30; let b08 = a20 * a33 - a23 * a30; let b09 = a21 * a32 - a22 * a31; let b10 = a21 * a33 - a23 * a31; let b11 = a22 * a33 - a23 * a32; // Calculate the determinant let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { return null; } det = 1.0 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det; return out; } /** * Generates a 2D projection matrix with the given bounds * * @param {mat3} out mat3 frustum matrix will be written into * @param {number} width Width of your gl context * @param {number} height Height of gl context * @returns {mat3} out */ export function projection(out, width, height) { out[0] = 2 / width; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = -2 / height; out[5] = 0; out[6] = -1; out[7] = 1; out[8] = 1; return out; } /** * Returns a string representation of a mat3 * * @param {mat3} a matrix to represent as a string * @returns {String} string representation of the matrix */ export function str(a) { return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')'; } /** * Returns Frobenius norm of a mat3 * * @param {mat3} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ export function frob(a) { return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2))) } /** * Adds two mat3's * * @param {mat3} out the receiving matrix * @param {mat3} a the first operand * @param {mat3} b the second operand * @returns {mat3} out */ export function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; out[6] = a[6] + b[6]; out[7] = a[7] + b[7]; out[8] = a[8] + b[8]; return out; } /** * Subtracts matrix b from matrix a * * @param {mat3} out the receiving matrix * @param {mat3} a the first operand * @param {mat3} b the second operand * @returns {mat3} out */ export function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; out[4] = a[4] - b[4]; out[5] = a[5] - b[5]; out[6] = a[6] - b[6]; out[7] = a[7] - b[7]; out[8] = a[8] - b[8]; return out; } /** * Multiply each element of the matrix by a scalar. * * @param {mat3} out the receiving matrix * @param {mat3} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat3} out */ export function multiplyScalar(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; out[4] = a[4] * b; out[5] = a[5] * b; out[6] = a[6] * b; out[7] = a[7] * b; out[8] = a[8] * b; return out; } /** * Adds two mat3's after multiplying each element of the second operand by a scalar value. * * @param {mat3} out the receiving vector * @param {mat3} a the first operand * @param {mat3} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat3} out */ export function multiplyScalarAndAdd(out, a, b, scale) { out[0] = a[0] + (b[0] * scale); out[1] = a[1] + (b[1] * scale); out[2] = a[2] + (b[2] * scale); out[3] = a[3] + (b[3] * scale); out[4] = a[4] + (b[4] * scale); out[5] = a[5] + (b[5] * scale); out[6] = a[6] + (b[6] * scale); out[7] = a[7] + (b[7] * scale); out[8] = a[8] + (b[8] * scale); return out; } /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {mat3} a The first matrix. * @param {mat3} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ export function exactEquals(a, b) { return a[0] === b[0] &amp;&amp; a[1] === b[1] &amp;&amp; a[2] === b[2] &amp;&amp; a[3] === b[3] &amp;&amp; a[4] === b[4] &amp;&amp; a[5] === b[5] &amp;&amp; a[6] === b[6] &amp;&amp; a[7] === b[7] &amp;&amp; a[8] === b[8]; } /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {mat3} a The first matrix. * @param {mat3} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ export function equals(a, b) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7], a8 = a[8]; let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7], b8 = b[8]; return (Math.abs(a0 - b0) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &amp;&amp; Math.abs(a1 - b1) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) &amp;&amp; Math.abs(a2 - b2) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)) &amp;&amp; Math.abs(a3 - b3) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a3), Math.abs(b3)) &amp;&amp; Math.abs(a4 - b4) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a4), Math.abs(b4)) &amp;&amp; Math.abs(a5 - b5) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a5), Math.abs(b5)) &amp;&amp; Math.abs(a6 - b6) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a6), Math.abs(b6)) &amp;&amp; Math.abs(a7 - b7) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a7), Math.abs(b7)) &amp;&amp; Math.abs(a8 - b8) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a8), Math.abs(b8))); } /** * Alias for {@link mat3.multiply} * @function */ export const mul = multiply; /** * Alias for {@link mat3.subtract} * @function */ export const sub = subtract; </code></pre> </article> </section> </div> <nav> <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul> </nav> <br class="clear"> <footer> Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri May 18 2018 11:25:14 GMT+0100 (BST) </footer> <script> prettyPrint(); </script> <script src="scripts/linenumber.js"> </script> </body> </html>