UNPKG

bot18

Version:

A high-frequency cryptocurrency trading bot by Zenbot creator @carlos8f

465 lines (412 loc) 11.3 kB
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>JSDoc: Source: mat2.js</title> <script src="scripts/prettify/prettify.js"> </script> <script src="scripts/prettify/lang-css.js"> </script> <!--[if lt IE 9]> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <![endif]--> <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css"> <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css"> </head> <body> <div id="main"> <h1 class="page-title">Source: mat2.js</h1> <section> <article> <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js" /** * 2x2 Matrix * @module mat2 */ /** * Creates a new identity mat2 * * @returns {mat2} a new 2x2 matrix */ export function create() { let out = new glMatrix.ARRAY_TYPE(4); out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; return out; } /** * Creates a new mat2 initialized with values from an existing matrix * * @param {mat2} a matrix to clone * @returns {mat2} a new 2x2 matrix */ export function clone(a) { let out = new glMatrix.ARRAY_TYPE(4); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } /** * Copy the values from one mat2 to another * * @param {mat2} out the receiving matrix * @param {mat2} a the source matrix * @returns {mat2} out */ export function copy(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } /** * Set a mat2 to the identity matrix * * @param {mat2} out the receiving matrix * @returns {mat2} out */ export function identity(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; return out; } /** * Create a new mat2 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m10 Component in column 1, row 0 position (index 2) * @param {Number} m11 Component in column 1, row 1 position (index 3) * @returns {mat2} out A new 2x2 matrix */ export function fromValues(m00, m01, m10, m11) { let out = new glMatrix.ARRAY_TYPE(4); out[0] = m00; out[1] = m01; out[2] = m10; out[3] = m11; return out; } /** * Set the components of a mat2 to the given values * * @param {mat2} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m10 Component in column 1, row 0 position (index 2) * @param {Number} m11 Component in column 1, row 1 position (index 3) * @returns {mat2} out */ export function set(out, m00, m01, m10, m11) { out[0] = m00; out[1] = m01; out[2] = m10; out[3] = m11; return out; } /** * Transpose the values of a mat2 * * @param {mat2} out the receiving matrix * @param {mat2} a the source matrix * @returns {mat2} out */ export function transpose(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache // some values if (out === a) { let a1 = a[1]; out[1] = a[2]; out[2] = a1; } else { out[0] = a[0]; out[1] = a[2]; out[2] = a[1]; out[3] = a[3]; } return out; } /** * Inverts a mat2 * * @param {mat2} out the receiving matrix * @param {mat2} a the source matrix * @returns {mat2} out */ export function invert(out, a) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; // Calculate the determinant let det = a0 * a3 - a2 * a1; if (!det) { return null; } det = 1.0 / det; out[0] = a3 * det; out[1] = -a1 * det; out[2] = -a2 * det; out[3] = a0 * det; return out; } /** * Calculates the adjugate of a mat2 * * @param {mat2} out the receiving matrix * @param {mat2} a the source matrix * @returns {mat2} out */ export function adjoint(out, a) { // Caching this value is nessecary if out == a let a0 = a[0]; out[0] = a[3]; out[1] = -a[1]; out[2] = -a[2]; out[3] = a0; return out; } /** * Calculates the determinant of a mat2 * * @param {mat2} a the source matrix * @returns {Number} determinant of a */ export function determinant(a) { return a[0] * a[3] - a[2] * a[1]; } /** * Multiplies two mat2's * * @param {mat2} out the receiving matrix * @param {mat2} a the first operand * @param {mat2} b the second operand * @returns {mat2} out */ export function multiply(out, a, b) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = a0 * b0 + a2 * b1; out[1] = a1 * b0 + a3 * b1; out[2] = a0 * b2 + a2 * b3; out[3] = a1 * b2 + a3 * b3; return out; } /** * Rotates a mat2 by the given angle * * @param {mat2} out the receiving matrix * @param {mat2} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat2} out */ export function rotate(out, a, rad) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; let s = Math.sin(rad); let c = Math.cos(rad); out[0] = a0 * c + a2 * s; out[1] = a1 * c + a3 * s; out[2] = a0 * -s + a2 * c; out[3] = a1 * -s + a3 * c; return out; } /** * Scales the mat2 by the dimensions in the given vec2 * * @param {mat2} out the receiving matrix * @param {mat2} a the matrix to rotate * @param {vec2} v the vec2 to scale the matrix by * @returns {mat2} out **/ export function scale(out, a, v) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; let v0 = v[0], v1 = v[1]; out[0] = a0 * v0; out[1] = a1 * v0; out[2] = a2 * v1; out[3] = a3 * v1; return out; } /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat2.identity(dest); * mat2.rotate(dest, dest, rad); * * @param {mat2} out mat2 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat2} out */ export function fromRotation(out, rad) { let s = Math.sin(rad); let c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = -s; out[3] = c; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat2.identity(dest); * mat2.scale(dest, dest, vec); * * @param {mat2} out mat2 receiving operation result * @param {vec2} v Scaling vector * @returns {mat2} out */ export function fromScaling(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = v[1]; return out; } /** * Returns a string representation of a mat2 * * @param {mat2} a matrix to represent as a string * @returns {String} string representation of the matrix */ export function str(a) { return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; } /** * Returns Frobenius norm of a mat2 * * @param {mat2} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ export function frob(a) { return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2))) } /** * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix * @param {mat2} L the lower triangular matrix * @param {mat2} D the diagonal matrix * @param {mat2} U the upper triangular matrix * @param {mat2} a the input matrix to factorize */ export function LDU(L, D, U, a) { L[2] = a[2]/a[0]; U[0] = a[0]; U[1] = a[1]; U[3] = a[3] - L[2] * U[1]; return [L, D, U]; } /** * Adds two mat2's * * @param {mat2} out the receiving matrix * @param {mat2} a the first operand * @param {mat2} b the second operand * @returns {mat2} out */ export function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; return out; } /** * Subtracts matrix b from matrix a * * @param {mat2} out the receiving matrix * @param {mat2} a the first operand * @param {mat2} b the second operand * @returns {mat2} out */ export function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; return out; } /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {mat2} a The first matrix. * @param {mat2} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ export function exactEquals(a, b) { return a[0] === b[0] &amp;&amp; a[1] === b[1] &amp;&amp; a[2] === b[2] &amp;&amp; a[3] === b[3]; } /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {mat2} a The first matrix. * @param {mat2} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ export function equals(a, b) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; return (Math.abs(a0 - b0) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &amp;&amp; Math.abs(a1 - b1) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) &amp;&amp; Math.abs(a2 - b2) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)) &amp;&amp; Math.abs(a3 - b3) &lt;= glMatrix.EPSILON*Math.max(1.0, Math.abs(a3), Math.abs(b3))); } /** * Multiply each element of the matrix by a scalar. * * @param {mat2} out the receiving matrix * @param {mat2} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat2} out */ export function multiplyScalar(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; return out; } /** * Adds two mat2's after multiplying each element of the second operand by a scalar value. * * @param {mat2} out the receiving vector * @param {mat2} a the first operand * @param {mat2} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat2} out */ export function multiplyScalarAndAdd(out, a, b, scale) { out[0] = a[0] + (b[0] * scale); out[1] = a[1] + (b[1] * scale); out[2] = a[2] + (b[2] * scale); out[3] = a[3] + (b[3] * scale); return out; } /** * Alias for {@link mat2.multiply} * @function */ export const mul = multiply; /** * Alias for {@link mat2.subtract} * @function */ export const sub = subtract; </code></pre> </article> </section> </div> <nav> <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul> </nav> <br class="clear"> <footer> Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri May 18 2018 11:25:14 GMT+0100 (BST) </footer> <script> prettyPrint(); </script> <script src="scripts/linenumber.js"> </script> </body> </html>