bot18
Version:
A high-frequency cryptocurrency trading bot by Zenbot creator @carlos8f
168 lines (148 loc) • 202 kB
JavaScript
/*!
@fileoverview gl-matrix - High performance matrix and vector operations
@author Brandon Jones
@author Colin MacKenzie IV
@version 2.6.1
Copyright (c) 2015-2018, Brandon Jones, Colin MacKenzie IV.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
(function webpackUniversalModuleDefinition(root, factory) {
if(typeof exports === 'object' && typeof module === 'object')
module.exports = factory();
else if(typeof define === 'function' && define.amd)
define([], factory);
else {
var a = factory();
for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i];
}
})(typeof self !== 'undefined' ? self : this, function() {
return /******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
/******/
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/
/******/ // Check if module is in cache
/******/ if(installedModules[moduleId]) {
/******/ return installedModules[moduleId].exports;
/******/ }
/******/ // Create a new module (and put it into the cache)
/******/ var module = installedModules[moduleId] = {
/******/ i: moduleId,
/******/ l: false,
/******/ exports: {}
/******/ };
/******/
/******/ // Execute the module function
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/
/******/ // Flag the module as loaded
/******/ module.l = true;
/******/
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/
/******/
/******/ // expose the modules object (__webpack_modules__)
/******/ __webpack_require__.m = modules;
/******/
/******/ // expose the module cache
/******/ __webpack_require__.c = installedModules;
/******/
/******/ // define getter function for harmony exports
/******/ __webpack_require__.d = function(exports, name, getter) {
/******/ if(!__webpack_require__.o(exports, name)) {
/******/ Object.defineProperty(exports, name, {
/******/ configurable: false,
/******/ enumerable: true,
/******/ get: getter
/******/ });
/******/ }
/******/ };
/******/
/******/ // define __esModule on exports
/******/ __webpack_require__.r = function(exports) {
/******/ Object.defineProperty(exports, '__esModule', { value: true });
/******/ };
/******/
/******/ // getDefaultExport function for compatibility with non-harmony modules
/******/ __webpack_require__.n = function(module) {
/******/ var getter = module && module.__esModule ?
/******/ function getDefault() { return module['default']; } :
/******/ function getModuleExports() { return module; };
/******/ __webpack_require__.d(getter, 'a', getter);
/******/ return getter;
/******/ };
/******/
/******/ // Object.prototype.hasOwnProperty.call
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
/******/
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "";
/******/
/******/
/******/ // Load entry module and return exports
/******/ return __webpack_require__(__webpack_require__.s = "./src/gl-matrix.js");
/******/ })
/************************************************************************/
/******/ ({
/***/ "./src/gl-matrix.js":
/*!**************************!*\
!*** ./src/gl-matrix.js ***!
\**************************/
/*! no static exports found */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.vec4 = exports.vec3 = exports.vec2 = exports.quat2 = exports.quat = exports.mat4 = exports.mat3 = exports.mat2d = exports.mat2 = exports.glMatrix = undefined;\n\nvar _common = __webpack_require__(/*! ./gl-matrix/common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nvar _mat = __webpack_require__(/*! ./gl-matrix/mat2.js */ \"./src/gl-matrix/mat2.js\");\n\nvar mat2 = _interopRequireWildcard(_mat);\n\nvar _mat2d = __webpack_require__(/*! ./gl-matrix/mat2d.js */ \"./src/gl-matrix/mat2d.js\");\n\nvar mat2d = _interopRequireWildcard(_mat2d);\n\nvar _mat2 = __webpack_require__(/*! ./gl-matrix/mat3.js */ \"./src/gl-matrix/mat3.js\");\n\nvar mat3 = _interopRequireWildcard(_mat2);\n\nvar _mat3 = __webpack_require__(/*! ./gl-matrix/mat4.js */ \"./src/gl-matrix/mat4.js\");\n\nvar mat4 = _interopRequireWildcard(_mat3);\n\nvar _quat = __webpack_require__(/*! ./gl-matrix/quat.js */ \"./src/gl-matrix/quat.js\");\n\nvar quat = _interopRequireWildcard(_quat);\n\nvar _quat2 = __webpack_require__(/*! ./gl-matrix/quat2.js */ \"./src/gl-matrix/quat2.js\");\n\nvar quat2 = _interopRequireWildcard(_quat2);\n\nvar _vec = __webpack_require__(/*! ./gl-matrix/vec2.js */ \"./src/gl-matrix/vec2.js\");\n\nvar vec2 = _interopRequireWildcard(_vec);\n\nvar _vec2 = __webpack_require__(/*! ./gl-matrix/vec3.js */ \"./src/gl-matrix/vec3.js\");\n\nvar vec3 = _interopRequireWildcard(_vec2);\n\nvar _vec3 = __webpack_require__(/*! ./gl-matrix/vec4.js */ \"./src/gl-matrix/vec4.js\");\n\nvar vec4 = _interopRequireWildcard(_vec3);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\nexports.glMatrix = glMatrix;\nexports.mat2 = mat2;\nexports.mat2d = mat2d;\nexports.mat3 = mat3;\nexports.mat4 = mat4;\nexports.quat = quat;\nexports.quat2 = quat2;\nexports.vec2 = vec2;\nexports.vec3 = vec3;\nexports.vec4 = vec4;\n\n//# sourceURL=webpack:///./src/gl-matrix.js?");
/***/ }),
/***/ "./src/gl-matrix/common.js":
/*!*********************************!*\
!*** ./src/gl-matrix/common.js ***!
\*********************************/
/*! no static exports found */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.setMatrixArrayType = setMatrixArrayType;\nexports.toRadian = toRadian;\nexports.equals = equals;\n/**\n * Common utilities\n * @module glMatrix\n */\n\n// Configuration Constants\nvar EPSILON = exports.EPSILON = 0.000001;\nvar ARRAY_TYPE = exports.ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;\nvar RANDOM = exports.RANDOM = Math.random;\n\n/**\n * Sets the type of array used when creating new vectors and matrices\n *\n * @param {Type} type Array type, such as Float32Array or Array\n */\nfunction setMatrixArrayType(type) {\n exports.ARRAY_TYPE = ARRAY_TYPE = type;\n}\n\nvar degree = Math.PI / 180;\n\n/**\n * Convert Degree To Radian\n *\n * @param {Number} a Angle in Degrees\n */\nfunction toRadian(a) {\n return a * degree;\n}\n\n/**\n * Tests whether or not the arguments have approximately the same value, within an absolute\n * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less\n * than or equal to 1.0, and a relative tolerance is used for larger values)\n *\n * @param {Number} a The first number to test.\n * @param {Number} b The second number to test.\n * @returns {Boolean} True if the numbers are approximately equal, false otherwise.\n */\nfunction equals(a, b) {\n return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));\n}\n\n//# sourceURL=webpack:///./src/gl-matrix/common.js?");
/***/ }),
/***/ "./src/gl-matrix/mat2.js":
/*!*******************************!*\
!*** ./src/gl-matrix/mat2.js ***!
\*******************************/
/*! no static exports found */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.identity = identity;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.str = str;\nexports.frob = frob;\nexports.LDU = LDU;\nexports.add = add;\nexports.subtract = subtract;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 2x2 Matrix\n * @module mat2\n */\n\n/**\n * Creates a new identity mat2\n *\n * @returns {mat2} a new 2x2 matrix\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\n * Creates a new mat2 initialized with values from an existing matrix\n *\n * @param {mat2} a matrix to clone\n * @returns {mat2} a new 2x2 matrix\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\n * Copy the values from one mat2 to another\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the source matrix\n * @returns {mat2} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\n * Set a mat2 to the identity matrix\n *\n * @param {mat2} out the receiving matrix\n * @returns {mat2} out\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\n * Create a new mat2 with the given values\n *\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m10 Component in column 1, row 0 position (index 2)\n * @param {Number} m11 Component in column 1, row 1 position (index 3)\n * @returns {mat2} out A new 2x2 matrix\n */\nfunction fromValues(m00, m01, m10, m11) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = m00;\n out[1] = m01;\n out[2] = m10;\n out[3] = m11;\n return out;\n}\n\n/**\n * Set the components of a mat2 to the given values\n *\n * @param {mat2} out the receiving matrix\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m10 Component in column 1, row 0 position (index 2)\n * @param {Number} m11 Component in column 1, row 1 position (index 3)\n * @returns {mat2} out\n */\nfunction set(out, m00, m01, m10, m11) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m10;\n out[3] = m11;\n return out;\n}\n\n/**\n * Transpose the values of a mat2\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the source matrix\n * @returns {mat2} out\n */\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache\n // some values\n if (out === a) {\n var a1 = a[1];\n out[1] = a[2];\n out[2] = a1;\n } else {\n out[0] = a[0];\n out[1] = a[2];\n out[2] = a[1];\n out[3] = a[3];\n }\n\n return out;\n}\n\n/**\n * Inverts a mat2\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the source matrix\n * @returns {mat2} out\n */\nfunction invert(out, a) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n\n // Calculate the determinant\n var det = a0 * a3 - a2 * a1;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = a3 * det;\n out[1] = -a1 * det;\n out[2] = -a2 * det;\n out[3] = a0 * det;\n\n return out;\n}\n\n/**\n * Calculates the adjugate of a mat2\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the source matrix\n * @returns {mat2} out\n */\nfunction adjoint(out, a) {\n // Caching this value is nessecary if out == a\n var a0 = a[0];\n out[0] = a[3];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a0;\n\n return out;\n}\n\n/**\n * Calculates the determinant of a mat2\n *\n * @param {mat2} a the source matrix\n * @returns {Number} determinant of a\n */\nfunction determinant(a) {\n return a[0] * a[3] - a[2] * a[1];\n}\n\n/**\n * Multiplies two mat2's\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the first operand\n * @param {mat2} b the second operand\n * @returns {mat2} out\n */\nfunction multiply(out, a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n out[0] = a0 * b0 + a2 * b1;\n out[1] = a1 * b0 + a3 * b1;\n out[2] = a0 * b2 + a2 * b3;\n out[3] = a1 * b2 + a3 * b3;\n return out;\n}\n\n/**\n * Rotates a mat2 by the given angle\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat2} out\n */\nfunction rotate(out, a, rad) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = a0 * c + a2 * s;\n out[1] = a1 * c + a3 * s;\n out[2] = a0 * -s + a2 * c;\n out[3] = a1 * -s + a3 * c;\n return out;\n}\n\n/**\n * Scales the mat2 by the dimensions in the given vec2\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the matrix to rotate\n * @param {vec2} v the vec2 to scale the matrix by\n * @returns {mat2} out\n **/\nfunction scale(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0 * v0;\n out[1] = a1 * v0;\n out[2] = a2 * v1;\n out[3] = a3 * v1;\n return out;\n}\n\n/**\n * Creates a matrix from a given angle\n * This is equivalent to (but much faster than):\n *\n * mat2.identity(dest);\n * mat2.rotate(dest, dest, rad);\n *\n * @param {mat2} out mat2 receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat2} out\n */\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = -s;\n out[3] = c;\n return out;\n}\n\n/**\n * Creates a matrix from a vector scaling\n * This is equivalent to (but much faster than):\n *\n * mat2.identity(dest);\n * mat2.scale(dest, dest, vec);\n *\n * @param {mat2} out mat2 receiving operation result\n * @param {vec2} v Scaling vector\n * @returns {mat2} out\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = v[1];\n return out;\n}\n\n/**\n * Returns a string representation of a mat2\n *\n * @param {mat2} a matrix to represent as a string\n * @returns {String} string representation of the matrix\n */\nfunction str(a) {\n return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';\n}\n\n/**\n * Returns Frobenius norm of a mat2\n *\n * @param {mat2} a the matrix to calculate Frobenius norm of\n * @returns {Number} Frobenius norm\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2));\n}\n\n/**\n * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix\n * @param {mat2} L the lower triangular matrix\n * @param {mat2} D the diagonal matrix\n * @param {mat2} U the upper triangular matrix\n * @param {mat2} a the input matrix to factorize\n */\n\nfunction LDU(L, D, U, a) {\n L[2] = a[2] / a[0];\n U[0] = a[0];\n U[1] = a[1];\n U[3] = a[3] - L[2] * U[1];\n return [L, D, U];\n}\n\n/**\n * Adds two mat2's\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the first operand\n * @param {mat2} b the second operand\n * @returns {mat2} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n return out;\n}\n\n/**\n * Subtracts matrix b from matrix a\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the first operand\n * @param {mat2} b the second operand\n * @returns {mat2} out\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n return out;\n}\n\n/**\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\n *\n * @param {mat2} a The first matrix.\n * @param {mat2} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];\n}\n\n/**\n * Returns whether or not the matrices have approximately the same elements in the same position.\n *\n * @param {mat2} a The first matrix.\n * @param {mat2} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));\n}\n\n/**\n * Multiply each element of the matrix by a scalar.\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the matrix to scale\n * @param {Number} b amount to scale the matrix's elements by\n * @returns {mat2} out\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n return out;\n}\n\n/**\n * Adds two mat2's after multiplying each element of the second operand by a scalar value.\n *\n * @param {mat2} out the receiving vector\n * @param {mat2} a the first operand\n * @param {mat2} b the second operand\n * @param {Number} scale the amount to scale b's elements by before adding\n * @returns {mat2} out\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n return out;\n}\n\n/**\n * Alias for {@link mat2.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Alias for {@link mat2.subtract}\n * @function\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat2.js?");
/***/ }),
/***/ "./src/gl-matrix/mat2d.js":
/*!********************************!*\
!*** ./src/gl-matrix/mat2d.js ***!
\********************************/
/*! no static exports found */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.identity = identity;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.invert = invert;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.translate = translate;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.fromTranslation = fromTranslation;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 2x3 Matrix\n * @module mat2d\n *\n * @description\n * A mat2d contains six elements defined as:\n * <pre>\n * [a, c, tx,\n * b, d, ty]\n * </pre>\n * This is a short form for the 3x3 matrix:\n * <pre>\n * [a, c, tx,\n * b, d, ty,\n * 0, 0, 1]\n * </pre>\n * The last row is ignored so the array is shorter and operations are faster.\n */\n\n/**\n * Creates a new identity mat2d\n *\n * @returns {mat2d} a new 2x3 matrix\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\n * Creates a new mat2d initialized with values from an existing matrix\n *\n * @param {mat2d} a matrix to clone\n * @returns {mat2d} a new 2x3 matrix\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n return out;\n}\n\n/**\n * Copy the values from one mat2d to another\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the source matrix\n * @returns {mat2d} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n return out;\n}\n\n/**\n * Set a mat2d to the identity matrix\n *\n * @param {mat2d} out the receiving matrix\n * @returns {mat2d} out\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\n * Create a new mat2d with the given values\n *\n * @param {Number} a Component A (index 0)\n * @param {Number} b Component B (index 1)\n * @param {Number} c Component C (index 2)\n * @param {Number} d Component D (index 3)\n * @param {Number} tx Component TX (index 4)\n * @param {Number} ty Component TY (index 5)\n * @returns {mat2d} A new mat2d\n */\nfunction fromValues(a, b, c, d, tx, ty) {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = a;\n out[1] = b;\n out[2] = c;\n out[3] = d;\n out[4] = tx;\n out[5] = ty;\n return out;\n}\n\n/**\n * Set the components of a mat2d to the given values\n *\n * @param {mat2d} out the receiving matrix\n * @param {Number} a Component A (index 0)\n * @param {Number} b Component B (index 1)\n * @param {Number} c Component C (index 2)\n * @param {Number} d Component D (index 3)\n * @param {Number} tx Component TX (index 4)\n * @param {Number} ty Component TY (index 5)\n * @returns {mat2d} out\n */\nfunction set(out, a, b, c, d, tx, ty) {\n out[0] = a;\n out[1] = b;\n out[2] = c;\n out[3] = d;\n out[4] = tx;\n out[5] = ty;\n return out;\n}\n\n/**\n * Inverts a mat2d\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the source matrix\n * @returns {mat2d} out\n */\nfunction invert(out, a) {\n var aa = a[0],\n ab = a[1],\n ac = a[2],\n ad = a[3];\n var atx = a[4],\n aty = a[5];\n\n var det = aa * ad - ab * ac;\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = ad * det;\n out[1] = -ab * det;\n out[2] = -ac * det;\n out[3] = aa * det;\n out[4] = (ac * aty - ad * atx) * det;\n out[5] = (ab * atx - aa * aty) * det;\n return out;\n}\n\n/**\n * Calculates the determinant of a mat2d\n *\n * @param {mat2d} a the source matrix\n * @returns {Number} determinant of a\n */\nfunction determinant(a) {\n return a[0] * a[3] - a[1] * a[2];\n}\n\n/**\n * Multiplies two mat2d's\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the first operand\n * @param {mat2d} b the second operand\n * @returns {mat2d} out\n */\nfunction multiply(out, a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5];\n out[0] = a0 * b0 + a2 * b1;\n out[1] = a1 * b0 + a3 * b1;\n out[2] = a0 * b2 + a2 * b3;\n out[3] = a1 * b2 + a3 * b3;\n out[4] = a0 * b4 + a2 * b5 + a4;\n out[5] = a1 * b4 + a3 * b5 + a5;\n return out;\n}\n\n/**\n * Rotates a mat2d by the given angle\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat2d} out\n */\nfunction rotate(out, a, rad) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = a0 * c + a2 * s;\n out[1] = a1 * c + a3 * s;\n out[2] = a0 * -s + a2 * c;\n out[3] = a1 * -s + a3 * c;\n out[4] = a4;\n out[5] = a5;\n return out;\n}\n\n/**\n * Scales the mat2d by the dimensions in the given vec2\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the matrix to translate\n * @param {vec2} v the vec2 to scale the matrix by\n * @returns {mat2d} out\n **/\nfunction scale(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0 * v0;\n out[1] = a1 * v0;\n out[2] = a2 * v1;\n out[3] = a3 * v1;\n out[4] = a4;\n out[5] = a5;\n return out;\n}\n\n/**\n * Translates the mat2d by the dimensions in the given vec2\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the matrix to translate\n * @param {vec2} v the vec2 to translate the matrix by\n * @returns {mat2d} out\n **/\nfunction translate(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0;\n out[1] = a1;\n out[2] = a2;\n out[3] = a3;\n out[4] = a0 * v0 + a2 * v1 + a4;\n out[5] = a1 * v0 + a3 * v1 + a5;\n return out;\n}\n\n/**\n * Creates a matrix from a given angle\n * This is equivalent to (but much faster than):\n *\n * mat2d.identity(dest);\n * mat2d.rotate(dest, dest, rad);\n *\n * @param {mat2d} out mat2d receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat2d} out\n */\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = -s;\n out[3] = c;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\n * Creates a matrix from a vector scaling\n * This is equivalent to (but much faster than):\n *\n * mat2d.identity(dest);\n * mat2d.scale(dest, dest, vec);\n *\n * @param {mat2d} out mat2d receiving operation result\n * @param {vec2} v Scaling vector\n * @returns {mat2d} out\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = v[1];\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\n * Creates a matrix from a vector translation\n * This is equivalent to (but much faster than):\n *\n * mat2d.identity(dest);\n * mat2d.translate(dest, dest, vec);\n *\n * @param {mat2d} out mat2d receiving operation result\n * @param {vec2} v Translation vector\n * @returns {mat2d} out\n */\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = v[0];\n out[5] = v[1];\n return out;\n}\n\n/**\n * Returns a string representation of a mat2d\n *\n * @param {mat2d} a matrix to represent as a string\n * @returns {String} string representation of the matrix\n */\nfunction str(a) {\n return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')';\n}\n\n/**\n * Returns Frobenius norm of a mat2d\n *\n * @param {mat2d} a the matrix to calculate Frobenius norm of\n * @returns {Number} Frobenius norm\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1);\n}\n\n/**\n * Adds two mat2d's\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the first operand\n * @param {mat2d} b the second operand\n * @returns {mat2d} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n return out;\n}\n\n/**\n * Subtracts matrix b from matrix a\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the first operand\n * @param {mat2d} b the second operand\n * @returns {mat2d} out\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n return out;\n}\n\n/**\n * Multiply each element of the matrix by a scalar.\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the matrix to scale\n * @param {Number} b amount to scale the matrix's elements by\n * @returns {mat2d} out\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n return out;\n}\n\n/**\n * Adds two mat2d's after multiplying each element of the second operand by a scalar value.\n *\n * @param {mat2d} out the receiving vector\n * @param {mat2d} a the first operand\n * @param {mat2d} b the second operand\n * @param {Number} scale the amount to scale b's elements by before adding\n * @returns {mat2d} out\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n return out;\n}\n\n/**\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\n *\n * @param {mat2d} a The first matrix.\n * @param {mat2d} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5];\n}\n\n/**\n * Returns whether or not the matrices have approximately the same elements in the same position.\n *\n * @param {mat2d} a The first matrix.\n * @param {mat2d} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5));\n}\n\n/**\n * Alias for {@link mat2d.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Alias for {@link mat2d.subtract}\n * @function\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat2d.js?");
/***/ }),
/***/ "./src/gl-matrix/mat3.js":
/*!*******************************!*\
!*** ./src/gl-matrix/mat3.js ***!
\*******************************/
/*! no static exports found */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.fromMat4 = fromMat4;\nexports.clone = clone;\nexports.copy = copy;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.identity = identity;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.translate = translate;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.fromTranslation = fromTranslation;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.fromMat2d = fromMat2d;\nexports.fromQuat = fromQuat;\nexports.normalFromMat4 = normalFromMat4;\nexports.projection = projection;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 3x3 Matrix\n * @module mat3\n */\n\n/**\n * Creates a new identity mat3\n *\n * @returns {mat3} a new 3x3 matrix\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\n * Copies the upper-left 3x3 values into the given mat3.\n *\n * @param {mat3} out the receiving 3x3 matrix\n * @param {mat4} a the source 4x4 matrix\n * @returns {mat3} out\n */\nfunction fromMat4(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[4];\n out[4] = a[5];\n out[5] = a[6];\n out[6] = a[8];\n out[7] = a[9];\n out[8] = a[10];\n return out;\n}\n\n/**\n * Creates a new mat3 initialized with values from an existing matrix\n *\n * @param {mat3} a matrix to clone\n * @returns {mat3} a new 3x3 matrix\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n\n/**\n * Copy the values from one mat3 to another\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the source matrix\n * @returns {mat3} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n\n/**\n * Create a new mat3 with the given values\n *\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\n * @returns {mat3} A new mat3\n */\nfunction fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n\n/**\n * Set the components of a mat3 to the given values\n *\n * @param {mat3} out the receiving matrix\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\n * @returns {mat3} out\n */\nfunction set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n\n/**\n * Set a mat3 to the identity matrix\n *\n * @param {mat3} out the receiving matrix\n * @returns {mat3} out\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\n * Transpose the values of a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the source matrix\n * @returns {mat3} out\n */\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a12 = a[5];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a01;\n out[5] = a[7];\n out[6] = a02;\n out[7] = a12;\n } else {\n out[0] = a[0];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a[1];\n out[4] = a[4];\n out[5] = a[7];\n out[6] = a[2];\n out[7] = a[5];\n out[8] = a[8];\n }\n\n return out;\n}\n\n/**\n * Inverts a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the source matrix\n * @returns {mat3} out\n */\nfunction invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n var b01 = a22 * a11 - a12 * a21;\n var b11 = -a22 * a10 + a12 * a20;\n var b21 = a21 * a10 - a11 * a20;\n\n // Calculate the determinant\n var det = a00 * b01 + a01 * b11 + a02 * b21;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = b01 * det;\n out[1] = (-a22 * a01 + a02 * a21) * det;\n out[2] = (a12 * a01 - a02 * a11) * det;\n out[3] = b11 * det;\n out[4] = (a22 * a00 - a02 * a20) * det;\n out[5] = (-a12 * a00 + a02 * a10) * det;\n out[6] = b21 * det;\n out[7] = (-a21 * a00 + a01 * a20) * det;\n out[8] = (a11 * a00 - a01 * a10) * det;\n return out;\n}\n\n/**\n * Calculates the adjugate of a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the source matrix\n * @returns {mat3} out\n */\nfunction adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n out[0] = a11 * a22 - a12 * a21;\n out[1] = a02 * a21 - a01 * a22;\n out[2] = a01 * a12 - a02 * a11;\n out[3] = a12 * a20 - a10 * a22;\n out[4] = a00 * a22 - a02 * a20;\n out[5] = a02 * a10 - a00 * a12;\n out[6] = a10 * a21 - a11 * a20;\n out[7] = a01 * a20 - a00 * a21;\n out[8] = a00 * a11 - a01 * a10;\n return out;\n}\n\n/**\n * Calculates the determinant of a mat3\n *\n * @param {mat3} a the source matrix\n * @returns {Number} determinant of a\n */\nfunction determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);\n}\n\n/**\n * Multiplies two mat3's\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the first operand\n * @param {mat3} b the second operand\n * @returns {mat3} out\n */\nfunction multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n var b00 = b[0],\n b01 = b[1],\n b02 = b[2];\n var b10 = b[3],\n b11 = b[4],\n b12 = b[5];\n var b20 = b[6],\n b21 = b[7],\n b22 = b[8];\n\n out[0] = b00 * a00 + b01 * a10 + b02 * a20;\n out[1] = b00 * a01 + b01 * a11 + b02 * a21;\n out[2] = b00 * a02 + b01 * a12 + b02 * a22;\n\n out[3] = b10 * a00 + b11 * a10 + b12 * a20;\n out[4] = b10 * a01 + b11 * a11 + b12 * a21;\n out[5] = b10 * a02 + b11 * a12 + b12 * a22;\n\n out[6] = b20 * a00 + b21 * a10 + b22 * a20;\n out[7] = b20 * a01 + b21 * a11 + b22 * a21;\n out[8] = b20 * a02 + b21 * a12 + b22 * a22;\n return out;\n}\n\n/**\n * Translate a mat3 by the given vector\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the matrix to translate\n * @param {vec2} v vector to translate by\n * @returns {mat3} out\n */\nfunction translate(out, a, v) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n x = v[0],\n y = v[1];\n\n out[0] = a00;\n out[1] = a01;\n out[2] = a02;\n\n out[3] = a10;\n out[4] = a11;\n out[5] = a12;\n\n out[6] = x * a00 + y * a10 + a20;\n out[7] = x * a01 + y * a11 + a21;\n out[8] = x * a02 + y * a12 + a22;\n return out;\n}\n\n/**\n * Rotates a mat3 by the given angle\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat3} out\n */\nfunction rotate(out, a, rad) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n s = Math.sin(rad),\n c = Math.cos(rad);\n\n out[0] = c * a00 + s * a10;\n out[1] = c * a01 + s * a11;\n out[2] = c * a02 + s * a12;\n\n out[3] = c * a10 - s * a00;\n out[4] = c * a11 - s * a01;\n out[5] = c * a12 - s * a02;\n\n out[6] = a20;\n out[7] = a21;\n out[8] = a22;\n return out;\n};\n\n/**\n * Scales the mat3 by the dimensions in the given vec2\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the matrix to rotate\n * @param {vec2} v the vec2 to scale the matrix by\n * @returns {mat3} out\n **/\nfunction scale(out, a, v) {\n var x = v[0],\n y = v[1];\n\n out[0] = x * a[0];\n out[1] = x * a[1];\n out[2] = x * a[2];\n\n out[3] = y * a[3];\n out[4] = y * a[4];\n out[5] = y * a[5];\n\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n\n/**\n * Creates a matrix from a vector translation\n * This is equivalent to (but much faster than):\n *\n * mat3.identity(dest);\n * mat3.translate(dest, dest, vec);\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {vec2} v Translation vector\n * @returns {mat3} out\n */\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = v[0];\n out[7] = v[1];\n out[8] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from a given angle\n * This is equivalent to (but much faster than):\n *\n * mat3.identity(dest);\n * mat3.rotate(dest, dest, rad);\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat3} out\n */\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n\n out[0] = c;\n out[1] = s;\n out[2] = 0;\n\n out[3] = -s;\n out[4] = c;\n out[5] = 0;\n\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from a vector scaling\n * This is equivalent to (but much faster than):\n *\n * mat3.identity(dest);\n * mat3.scale(dest, dest, vec);\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {vec2} v Scaling vector\n * @returns {mat3} out\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n\n out[3] = 0;\n out[4] = v[1];\n out[5] = 0;\n\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\n * Copies the values from a mat2d into a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {mat2d} a the matrix to copy\n * @returns {mat3} out\n **/\nfunction fromMat2d(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = 0;\n\n out[3] = a[2];\n out[4] = a[3];\n out[5] = 0;\n\n out[6] = a[4];\n out[7] = a[5];\n out[8] = 1;\n return out;\n}\n\n/**\n* Calculates a 3x3 matrix from the given quaternion\n*\n* @param {mat3} out mat3 receiving operation result\n* @param {quat} q Quaternion to create matrix from\n*\n* @returns {mat3} out\n*/\nfunction fromQuat(out, q) {\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var yx = y * x2;\n var yy = y * y2;\n var zx = z * x2;\n var zy = z * y2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n\n out[0] = 1 - yy - zz;\n out[3] = yx - wz;\n out[6] = zx + wy;\n\n out[1] = yx + wz;\n out[4] = 1 - xx - zz;\n out[7] = zy - wx;\n\n out[2] = zx - wy;\n out[5] = zy + wx;\n out[8] = 1 - xx - yy;\n\n return out;\n}\n\n/**\n* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix\n*\n* @param {mat3} out mat3 receiving operation result\n* @param {mat4} a Mat4 to derive the normal matrix from\n*\n* @returns {mat3} out\n*/\nfunction normalFromMat4(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32;\n\n // Calculate the determinant\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n\n out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n\n out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n\n return out;\n}\n\n/**\n * Generates a 2D projection matrix with the given bounds\n *\n * @param {mat3} out mat3 frustum matrix will be written into\n * @param {number} width Width of your gl context\n * @param {number} height Height of gl context\n * @returns {mat3} out\n */\nfunction projection(out, width, height) {\n out[0] = 2 / width;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = -2 / height;\n out[5] = 0;\n out[6] = -1;\n out[7] = 1;\n out[8] = 1;\n return out;\n}\n\n/**\n * Returns a string representation of a mat3\n *\n * @param {mat3} a matrix to represent as a string\n * @returns {String} string representation of the matrix\n */\nfunction str(a) {\n return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')';\n}\n\n/**\n * Returns Frobenius norm of a mat3\n *\n * @param {mat3} a the matrix to calculate Frobenius norm of\n * @returns {Number} Frobenius norm\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2));\n}\n\n/**\n * Adds two mat3's\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the first operand\n * @param {mat3} b the second operand\n * @returns {mat3} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n ou