bmad-method-mcp
Version:
Breakthrough Method of Agile AI-driven Development with Enhanced MCP Integration
249 lines (197 loc) • 11.8 kB
Markdown
# Enhanced MCP Tools Plan for BMAD Method Integration
## Overview
This document outlines advanced MCP tools to enhance the BMAD Method with intelligent AI-driven project management, automation, and quality assurance capabilities.
## Current MCP Tools (Implemented)
1. `bmad_create_story` - Create new stories with auto-numbering
2. `bmad_update_task_status` - Update task/story status and assignee
3. `bmad_get_next_story_number` - Get next available story number
4. `bmad_create_epic` - Create new epics
5. `bmad_query_tasks` - Query tasks with filters
6. `bmad_get_project_progress` - Get overall progress statistics
7. `bmad_create_document` - Create/update project documents
8. `bmad_create_sprint` - Create new sprints
## Enhanced MCP Tools - Phase 1: Intelligence & Automation
### 1. Story Analysis & Intelligence Tools
#### `bmad_analyze_story_complexity`
- **Purpose**: AI-powered story complexity analysis and estimation
- **Parameters**: `story_id`, `analysis_type` (complexity, effort, risk)
- **Returns**: Complexity score, effort estimate, risk factors, recommendations
- **Integration**: Automatically analyzes stories when created/updated
#### `bmad_suggest_story_breakdown`
- **Purpose**: AI suggestions for breaking down complex stories
- **Parameters**: `story_id`, `max_story_points`
- **Returns**: Suggested sub-stories with acceptance criteria
- **Integration**: Triggered when story complexity exceeds threshold
#### `bmad_validate_acceptance_criteria`
- **Purpose**: AI validation of story acceptance criteria completeness
- **Parameters**: `story_id`, `criteria_text`
- **Returns**: Validation score, missing elements, improvement suggestions
- **Integration**: Real-time validation in story creation forms
### 2. Dependency & Workflow Management
#### `bmad_detect_dependencies`
- **Purpose**: Automatically detect dependencies between stories/epics
- **Parameters**: `epic_num`, `include_external` (boolean)
- **Returns**: Dependency graph, blocking relationships, critical path
- **Integration**: Auto-runs when stories are created/modified
#### `bmad_optimize_sprint_allocation`
- **Purpose**: AI-powered sprint planning optimization
- **Parameters**: `sprint_id`, `team_capacity`, `priority_weights`
- **Returns**: Optimized story allocation, capacity utilization, risk assessment
- **Integration**: Sprint planning assistant tool
#### `bmad_suggest_next_tasks`
- **Purpose**: Intelligent task recommendations based on project state
- **Parameters**: `assignee`, `epic_num`, `context`
- **Returns**: Prioritized task suggestions with reasoning
- **Integration**: Personal task dashboard for each agent
### 3. Quality & Compliance Tools
#### `bmad_review_code_quality`
- **Purpose**: Automated code quality assessment integrated with tasks
- **Parameters**: `task_id`, `code_repository`, `quality_gates`
- **Returns**: Quality metrics, issues, recommendations, approval status
- **Integration**: Automatic quality checks on task completion
#### `bmad_validate_deliverables`
- **Purpose**: AI validation of task deliverables against acceptance criteria
- **Parameters**: `task_id`, `deliverable_urls`, `validation_type`
- **Returns**: Validation results, missing items, quality score
- **Integration**: Pre-completion validation workflow
#### `bmad_check_compliance`
- **Purpose**: Ensure project compliance with standards and regulations
- **Parameters**: `project_scope`, `compliance_frameworks`
- **Returns**: Compliance status, violations, remediation actions
- **Integration**: Continuous compliance monitoring
## Enhanced MCP Tools - Phase 2: Advanced Analytics & Insights
### 4. Predictive Analytics Tools
#### `bmad_predict_delivery_date`
- **Purpose**: ML-powered delivery date prediction
- **Parameters**: `epic_num`, `current_velocity`, `historical_data`
- **Returns**: Predicted completion date, confidence interval, risk factors
- **Integration**: Epic dashboard with predictive timeline
#### `bmad_forecast_resource_needs`
- **Purpose**: Predict resource requirements for upcoming work
- **Parameters**: `time_horizon`, `project_scope`, `team_profile`
- **Returns**: Resource forecasts, skill gap analysis, hiring recommendations
- **Integration**: Resource planning dashboard
#### `bmad_analyze_velocity_trends`
- **Purpose**: Team velocity analysis and trend prediction
- **Parameters**: `team_id`, `time_period`, `trend_analysis`
- **Returns**: Velocity trends, performance insights, improvement recommendations
- **Integration**: Team performance analytics
### 5. Risk Management Tools
#### `bmad_assess_project_risks`
- **Purpose**: Comprehensive project risk assessment
- **Parameters**: `project_id`, `risk_categories`, `assessment_depth`
- **Returns**: Risk register, impact analysis, mitigation strategies
- **Integration**: Risk dashboard with automated monitoring
#### `bmad_monitor_blockers`
- **Purpose**: Proactive blocker detection and resolution tracking
- **Parameters**: `epic_num`, `blocker_types`, `escalation_rules`
- **Returns**: Active blockers, escalation recommendations, resolution suggestions
- **Integration**: Real-time blocker alerts and dashboard
#### `bmad_evaluate_technical_debt`
- **Purpose**: Technical debt assessment and prioritization
- **Parameters**: `codebase_url`, `debt_categories`, `business_impact`
- **Returns**: Debt inventory, priority matrix, refactoring recommendations
- **Integration**: Technical debt tracking in sprint planning
### 6. Communication & Collaboration Tools
#### `bmad_generate_status_reports`
- **Purpose**: Automated status report generation for stakeholders
- **Parameters**: `report_type`, `audience`, `time_period`, `detail_level`
- **Returns**: Formatted reports (PDF, HTML, Slack), key metrics, insights
- **Integration**: Scheduled report generation and distribution
#### `bmad_facilitate_retrospectives`
- **Purpose**: AI-facilitated retrospective analysis and improvement suggestions
- **Parameters**: `sprint_id`, `team_feedback`, `historical_retrospectives`
- **Returns**: Retrospective insights, action items, improvement roadmap
- **Integration**: Post-sprint retrospective automation
#### `bmad_coordinate_handoffs`
- **Purpose**: Intelligent coordination of work handoffs between agents
- **Parameters**: `from_agent`, `to_agent`, `handoff_type`, `context`
- **Returns**: Handoff checklist, context summary, quality gates
- **Integration**: Workflow transition automation
## Enhanced MCP Tools - Phase 3: Advanced Integration & AI Agents
### 7. AI Agent Collaboration Tools
#### `bmad_orchestrate_agent_workflow`
- **Purpose**: Coordinate multi-agent workflows for complex tasks
- **Parameters**: `workflow_type`, `participating_agents`, `coordination_rules`
- **Returns**: Orchestration plan, agent assignments, communication protocols
- **Integration**: Multi-agent task execution engine
#### `bmad_negotiate_priorities`
- **Purpose**: AI-mediated priority negotiation between agents
- **Parameters**: `conflicting_priorities`, `business_constraints`, `negotiation_rules`
- **Returns**: Consensus priorities, trade-off analysis, decision rationale
- **Integration**: Priority conflict resolution system
#### `bmad_share_knowledge`
- **Purpose**: Cross-agent knowledge sharing and learning
- **Parameters**: `knowledge_type`, `source_agent`, `target_agents`, `context`
- **Returns**: Knowledge transfer plan, learning materials, validation tests
- **Integration**: Continuous learning and knowledge management
### 8. External Integration Tools
#### `bmad_sync_external_tools`
- **Purpose**: Bidirectional sync with external project management tools
- **Parameters**: `tool_type`, `sync_scope`, `mapping_rules`, `conflict_resolution`
- **Returns**: Sync status, conflicts, data consistency reports
- **Integration**: Real-time data synchronization with Jira, Azure DevOps, etc.
#### `bmad_integrate_cicd_pipeline`
- **Purpose**: Deep integration with CI/CD pipelines and deployment status
- **Parameters**: `pipeline_url`, `integration_scope`, `notification_rules`
- **Returns**: Pipeline status, deployment metrics, quality gates
- **Integration**: DevOps workflow integration
#### `bmad_connect_monitoring_tools`
- **Purpose**: Integration with application monitoring and alerting systems
- **Parameters**: `monitoring_tools`, `alert_routing`, `escalation_policies`
- **Returns**: System health status, alert correlation, incident management
- **Integration**: Production health monitoring in project context
## Implementation Strategy
### Phase 1 (Immediate): Intelligence & Automation
- **Timeline**: 2-4 weeks
- **Focus**: Core AI-powered analysis and automation tools
- **Key Tools**: Story analysis, dependency detection, quality validation
- **Benefits**: Immediate productivity gains, reduced manual effort
### Phase 2 (Medium-term): Analytics & Insights
- **Timeline**: 1-2 months
- **Focus**: Predictive analytics and risk management
- **Key Tools**: Delivery prediction, resource forecasting, risk assessment
- **Benefits**: Better planning, proactive issue resolution
### Phase 3 (Long-term): Advanced Integration
- **Timeline**: 2-3 months
- **Focus**: Multi-agent collaboration and external integrations
- **Key Tools**: Agent orchestration, external tool sync, CI/CD integration
- **Benefits**: Comprehensive project ecosystem integration
## Technical Implementation Notes
### MCP Server Enhancements Required
1. **Machine Learning Integration**: Add ML model serving capabilities
2. **External API Connectors**: Build connectors for popular tools (Jira, GitHub, etc.)
3. **Event-Driven Architecture**: Implement real-time event processing
4. **Advanced Data Analytics**: Add time-series analysis and predictive modeling
5. **Multi-Agent Communication**: Implement agent-to-agent communication protocols
### Database Schema Extensions
1. **Analytics Tables**: Store historical metrics and trends
2. **ML Model Metadata**: Track model versions and performance
3. **External Tool Mappings**: Maintain sync state and mappings
4. **Agent Collaboration**: Store agent interaction history and preferences
### WebUI Enhancements
1. **Analytics Dashboard**: Advanced charts and predictive visualizations
2. **Risk Management Interface**: Risk matrix and mitigation tracking
3. **Agent Collaboration Views**: Multi-agent workflow visualization
4. **Real-time Notifications**: Live updates and alert system
## Success Metrics
### Productivity Metrics
- **Story Creation Time**: Reduce by 40% with AI assistance
- **Planning Accuracy**: Improve estimation accuracy by 60%
- **Quality Issues**: Reduce defects by 50% with automated validation
### Process Metrics
- **Sprint Planning Time**: Reduce planning effort by 30%
- **Risk Detection**: Identify 80% of risks proactively
- **Communication Overhead**: Reduce status meetings by 50%
### Quality Metrics
- **Acceptance Criteria Completeness**: Achieve 95% completeness score
- **Technical Debt**: Maintain debt below 15% of codebase
- **Delivery Predictability**: Achieve 90% on-time delivery rate
## Conclusion
These enhanced MCP tools will transform the BMAD Method from a structured framework into an intelligent, self-optimizing project management ecosystem. The phased approach ensures immediate value while building toward comprehensive AI-driven project orchestration.
The integration of these tools will enable:
- **Proactive Problem Solving**: Issues detected and resolved before they impact delivery
- **Intelligent Automation**: Routine tasks automated with AI-driven quality assurance
- **Predictive Planning**: Data-driven forecasting and resource optimization
- **Seamless Collaboration**: Frictionless handoffs and communication between agents
- **Continuous Improvement**: Self-learning system that optimizes processes over time