bitmark-grammar
Version:
245 lines (210 loc) • 7.53 kB
text/typescript
/*!
* Copyright 2016 The ANTLR Project. All rights reserved.
* Licensed under the BSD-3-Clause license. See LICENSE file in the project root for license information.
*/
// ConvertTo-TS run at 2016-10-04T11:26:57.3490837-07:00
import { ATN } from "./atn/ATN";
import { Parser } from "./Parser";
import { Recognizer } from "./Recognizer";
import { RuleNode } from "./tree/RuleNode";
import { ParseTree } from "./tree/ParseTree";
import { Interval } from "./misc/Interval";
import { Override } from "./Decorators";
import { Trees } from "./tree/Trees";
import { ParseTreeVisitor } from "./tree/ParseTreeVisitor";
import { ParserRuleContext } from "./ParserRuleContext";
/** A rule context is a record of a single rule invocation.
*
* We form a stack of these context objects using the parent
* pointer. A parent pointer of `undefined` indicates that the current
* context is the bottom of the stack. The ParserRuleContext subclass
* as a children list so that we can turn this data structure into a
* tree.
*
* The root node always has a `undefined` pointer and invokingState of -1.
*
* Upon entry to parsing, the first invoked rule function creates a
* context object (a subclass specialized for that rule such as
* SContext) and makes it the root of a parse tree, recorded by field
* Parser._ctx.
*
* public final SContext s() throws RecognitionException {
* SContext _localctx = new SContext(_ctx, state); <-- create new node
* enterRule(_localctx, 0, RULE_s); <-- push it
* ...
* exitRule(); <-- pop back to _localctx
* return _localctx;
* }
*
* A subsequent rule invocation of r from the start rule s pushes a
* new context object for r whose parent points at s and use invoking
* state is the state with r emanating as edge label.
*
* The invokingState fields from a context object to the root
* together form a stack of rule indication states where the root
* (bottom of the stack) has a -1 sentinel value. If we invoke start
* symbol s then call r1, which calls r2, the would look like
* this:
*
* SContext[-1] <- root node (bottom of the stack)
* R1Context[p] <- p in rule s called r1
* R2Context[q] <- q in rule r1 called r2
*
* So the top of the stack, _ctx, represents a call to the current
* rule and it holds the return address from another rule that invoke
* to this rule. To invoke a rule, we must always have a current context.
*
* The parent contexts are useful for computing lookahead sets and
* getting error information.
*
* These objects are used during parsing and prediction.
* For the special case of parsers, we use the subclass
* ParserRuleContext.
*
* @see ParserRuleContext
*/
export class RuleContext extends RuleNode {
public _parent: RuleContext | undefined;
public invokingState: number;
constructor();
constructor(parent: RuleContext | undefined, invokingState: number);
constructor(parent?: RuleContext, invokingState?: number) {
super();
this._parent = parent;
this.invokingState = invokingState != null ? invokingState : -1;
}
public static getChildContext(parent: RuleContext, invokingState: number): RuleContext {
return new RuleContext(parent, invokingState);
}
public depth(): number {
let n = 0;
let p: RuleContext | undefined = this;
while (p) {
p = p._parent;
n++;
}
return n;
}
/** A context is empty if there is no invoking state; meaning nobody called
* current context.
*/
get isEmpty(): boolean {
return this.invokingState === -1;
}
// satisfy the ParseTree / SyntaxTree interface
get sourceInterval(): Interval {
return Interval.INVALID;
}
get ruleContext(): RuleContext { return this; }
get parent(): RuleContext | undefined { return this._parent; }
/** @since 4.7. {@see ParseTree#setParent} comment */
public setParent(parent: RuleContext): void {
this._parent = parent;
}
get payload(): RuleContext { return this; }
/** Return the combined text of all child nodes. This method only considers
* tokens which have been added to the parse tree.
*
* Since tokens on hidden channels (e.g. whitespace or comments) are not
* added to the parse trees, they will not appear in the output of this
* method.
*/
get text(): string {
if (this.childCount === 0) {
return "";
}
let builder = "";
for (let i = 0; i < this.childCount; i++) {
builder += this.getChild(i).text;
}
return builder.toString();
}
get ruleIndex(): number { return -1; }
/** For rule associated with this parse tree internal node, return
* the outer alternative number used to match the input. Default
* implementation does not compute nor store this alt num. Create
* a subclass of ParserRuleContext with backing field and set
* option contextSuperClass.
* to set it.
*
* @since 4.5.3
*/
get altNumber(): number { return ATN.INVALID_ALT_NUMBER; }
/** Set the outer alternative number for this context node. Default
* implementation does nothing to avoid backing field overhead for
* trees that don't need it. Create
* a subclass of ParserRuleContext with backing field and set
* option contextSuperClass.
*
* @since 4.5.3
*/
set altNumber(altNumber: number) {
// intentionally ignored by the base implementation
}
public getChild(i: number): ParseTree {
throw new RangeError("i must be greater than or equal to 0 and less than childCount");
}
get childCount(): number {
return 0;
}
public accept<T>(visitor: ParseTreeVisitor<T>): T {
return visitor.visitChildren(this);
}
/** Print out a whole tree, not just a node, in LISP format
* (root child1 .. childN). Print just a node if this is a leaf.
* We have to know the recognizer so we can get rule names.
*/
public toStringTree(recog: Parser): string;
/** Print out a whole tree, not just a node, in LISP format
* (root child1 .. childN). Print just a node if this is a leaf.
*/
public toStringTree(ruleNames: string[] | undefined): string;
public toStringTree(): string;
public toStringTree(recog?: Parser | string[]): string {
return Trees.toStringTree(this, recog);
}
public toString(): string;
public toString(recog: Recognizer<any, any> | undefined): string;
public toString(ruleNames: string[] | undefined): string;
// // recog undefined unless ParserRuleContext, in which case we use subclass toString(...)
public toString(recog: Recognizer<any, any> | undefined, stop: RuleContext | undefined): string;
public toString(ruleNames: string[] | undefined, stop: RuleContext | undefined): string;
public toString(
arg1?: Recognizer<any, any> | string[],
stop?: RuleContext)
: string {
const ruleNames = (arg1 instanceof Recognizer) ? arg1.ruleNames : arg1;
stop = stop || ParserRuleContext.emptyContext();
let buf = "";
let p: RuleContext | undefined = this;
buf += ("[");
while (p && p !== stop) {
if (!ruleNames) {
if (!p.isEmpty) {
buf += (p.invokingState);
}
} else {
let ruleIndex: number = p.ruleIndex;
let ruleName: string = (ruleIndex >= 0 && ruleIndex < ruleNames.length)
? ruleNames[ruleIndex] : ruleIndex.toString();
buf += (ruleName);
}
if (p._parent && (ruleNames || !p._parent.isEmpty)) {
buf += (" ");
}
p = p._parent;
}
buf += ("]");
return buf.toString();
}
}