UNPKG

bitbox-api

Version:

A library to interact with BitBox hardware wallets

1,268 lines (1,118 loc) 40.4 kB
import { getWebHIDDevice, getBridgeDevice, jsSleep } from './webhid'; let wasm; export function __wbg_set_wasm(val) { wasm = val; } const heap = new Array(128).fill(undefined); heap.push(undefined, null, true, false); function getObject(idx) { return heap[idx]; } let WASM_VECTOR_LEN = 0; let cachedUint8Memory0 = null; function getUint8Memory0() { if (cachedUint8Memory0 === null || cachedUint8Memory0.byteLength === 0) { cachedUint8Memory0 = new Uint8Array(wasm.memory.buffer); } return cachedUint8Memory0; } const lTextEncoder = typeof TextEncoder === 'undefined' ? (0, module.require)('util').TextEncoder : TextEncoder; let cachedTextEncoder = new lTextEncoder('utf-8'); const encodeString = (typeof cachedTextEncoder.encodeInto === 'function' ? function (arg, view) { return cachedTextEncoder.encodeInto(arg, view); } : function (arg, view) { const buf = cachedTextEncoder.encode(arg); view.set(buf); return { read: arg.length, written: buf.length }; }); function passStringToWasm0(arg, malloc, realloc) { if (realloc === undefined) { const buf = cachedTextEncoder.encode(arg); const ptr = malloc(buf.length, 1) >>> 0; getUint8Memory0().subarray(ptr, ptr + buf.length).set(buf); WASM_VECTOR_LEN = buf.length; return ptr; } let len = arg.length; let ptr = malloc(len, 1) >>> 0; const mem = getUint8Memory0(); let offset = 0; for (; offset < len; offset++) { const code = arg.charCodeAt(offset); if (code > 0x7F) break; mem[ptr + offset] = code; } if (offset !== len) { if (offset !== 0) { arg = arg.slice(offset); } ptr = realloc(ptr, len, len = offset + arg.length * 3, 1) >>> 0; const view = getUint8Memory0().subarray(ptr + offset, ptr + len); const ret = encodeString(arg, view); offset += ret.written; ptr = realloc(ptr, len, offset, 1) >>> 0; } WASM_VECTOR_LEN = offset; return ptr; } function isLikeNone(x) { return x === undefined || x === null; } let cachedInt32Memory0 = null; function getInt32Memory0() { if (cachedInt32Memory0 === null || cachedInt32Memory0.byteLength === 0) { cachedInt32Memory0 = new Int32Array(wasm.memory.buffer); } return cachedInt32Memory0; } let heap_next = heap.length; function addHeapObject(obj) { if (heap_next === heap.length) heap.push(heap.length + 1); const idx = heap_next; heap_next = heap[idx]; heap[idx] = obj; return idx; } const lTextDecoder = typeof TextDecoder === 'undefined' ? (0, module.require)('util').TextDecoder : TextDecoder; let cachedTextDecoder = new lTextDecoder('utf-8', { ignoreBOM: true, fatal: true }); cachedTextDecoder.decode(); function getStringFromWasm0(ptr, len) { ptr = ptr >>> 0; return cachedTextDecoder.decode(getUint8Memory0().subarray(ptr, ptr + len)); } function dropObject(idx) { if (idx < 132) return; heap[idx] = heap_next; heap_next = idx; } function takeObject(idx) { const ret = getObject(idx); dropObject(idx); return ret; } let cachedFloat64Memory0 = null; function getFloat64Memory0() { if (cachedFloat64Memory0 === null || cachedFloat64Memory0.byteLength === 0) { cachedFloat64Memory0 = new Float64Array(wasm.memory.buffer); } return cachedFloat64Memory0; } let cachedBigInt64Memory0 = null; function getBigInt64Memory0() { if (cachedBigInt64Memory0 === null || cachedBigInt64Memory0.byteLength === 0) { cachedBigInt64Memory0 = new BigInt64Array(wasm.memory.buffer); } return cachedBigInt64Memory0; } function debugString(val) { // primitive types const type = typeof val; if (type == 'number' || type == 'boolean' || val == null) { return `${val}`; } if (type == 'string') { return `"${val}"`; } if (type == 'symbol') { const description = val.description; if (description == null) { return 'Symbol'; } else { return `Symbol(${description})`; } } if (type == 'function') { const name = val.name; if (typeof name == 'string' && name.length > 0) { return `Function(${name})`; } else { return 'Function'; } } // objects if (Array.isArray(val)) { const length = val.length; let debug = '['; if (length > 0) { debug += debugString(val[0]); } for(let i = 1; i < length; i++) { debug += ', ' + debugString(val[i]); } debug += ']'; return debug; } // Test for built-in const builtInMatches = /\[object ([^\]]+)\]/.exec(toString.call(val)); let className; if (builtInMatches.length > 1) { className = builtInMatches[1]; } else { // Failed to match the standard '[object ClassName]' return toString.call(val); } if (className == 'Object') { // we're a user defined class or Object // JSON.stringify avoids problems with cycles, and is generally much // easier than looping through ownProperties of `val`. try { return 'Object(' + JSON.stringify(val) + ')'; } catch (_) { return 'Object'; } } // errors if (val instanceof Error) { return `${val.name}: ${val.message}\n${val.stack}`; } // TODO we could test for more things here, like `Set`s and `Map`s. return className; } const CLOSURE_DTORS = (typeof FinalizationRegistry === 'undefined') ? { register: () => {}, unregister: () => {} } : new FinalizationRegistry(state => { wasm.__wbindgen_export_2.get(state.dtor)(state.a, state.b) }); function makeMutClosure(arg0, arg1, dtor, f) { const state = { a: arg0, b: arg1, cnt: 1, dtor }; const real = (...args) => { // First up with a closure we increment the internal reference // count. This ensures that the Rust closure environment won't // be deallocated while we're invoking it. state.cnt++; const a = state.a; state.a = 0; try { return f(a, state.b, ...args); } finally { if (--state.cnt === 0) { wasm.__wbindgen_export_2.get(state.dtor)(a, state.b); CLOSURE_DTORS.unregister(state); } else { state.a = a; } } }; real.original = state; CLOSURE_DTORS.register(real, state, state); return real; } function __wbg_adapter_52(arg0, arg1, arg2) { wasm._dyn_core__ops__function__FnMut__A____Output___R_as_wasm_bindgen__closure__WasmClosure___describe__invoke__h25ae625cfc7c689e(arg0, arg1, addHeapObject(arg2)); } function handleError(f, args) { try { return f.apply(this, args); } catch (e) { wasm.__wbindgen_exn_store(addHeapObject(e)); } } /** * Connect to a BitBox02 using WebHID. WebHID is mainly supported by Chrome. * @param {OnCloseCb} on_close_cb * @returns {Promise<BitBox>} */ export function bitbox02ConnectWebHID(on_close_cb) { const ret = wasm.bitbox02ConnectWebHID(addHeapObject(on_close_cb)); return takeObject(ret); } /** * Connect to a BitBox02 by using the BitBoxBridge service. * @param {OnCloseCb} on_close_cb * @returns {Promise<BitBox>} */ export function bitbox02ConnectBridge(on_close_cb) { const ret = wasm.bitbox02ConnectBridge(addHeapObject(on_close_cb)); return takeObject(ret); } /** * Connect to a BitBox02 using WebHID if available. If WebHID is not available, we attempt to * connect using the BitBoxBridge. * @param {OnCloseCb} on_close_cb * @returns {Promise<BitBox>} */ export function bitbox02ConnectAuto(on_close_cb) { const ret = wasm.bitbox02ConnectAuto(addHeapObject(on_close_cb)); return takeObject(ret); } /** * Run any exception raised by this library through this function to get a typed error. * * Example: * ```JavaScript * try { ... } * catch (err) { * const typedErr: Error = bitbox.ensureError(err); * // Handle error by checking the error code, displaying the error message, etc. * } * * See also: isUserAbort(). * @param {any} err * @returns {Error} */ export function ensureError(err) { const ret = wasm.ensureError(addHeapObject(err)); return takeObject(ret); } /** * Returns true if the user cancelled an operation. * @param {Error} err * @returns {boolean} */ export function isUserAbort(err) { const ret = wasm.isUserAbort(addHeapObject(err)); return ret !== 0; } /** * @param {string} recipient_address * @returns {EthAddressCase} */ export function ethIdentifyCase(recipient_address) { const ptr0 = passStringToWasm0(recipient_address, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); const len0 = WASM_VECTOR_LEN; const ret = wasm.ethIdentifyCase(ptr0, len0); return takeObject(ret); } function passArray8ToWasm0(arg, malloc) { const ptr = malloc(arg.length * 1, 1) >>> 0; getUint8Memory0().set(arg, ptr / 1); WASM_VECTOR_LEN = arg.length; return ptr; } let cachedUint32Memory0 = null; function getUint32Memory0() { if (cachedUint32Memory0 === null || cachedUint32Memory0.byteLength === 0) { cachedUint32Memory0 = new Uint32Array(wasm.memory.buffer); } return cachedUint32Memory0; } function passArrayJsValueToWasm0(array, malloc) { const ptr = malloc(array.length * 4, 4) >>> 0; const mem = getUint32Memory0(); for (let i = 0; i < array.length; i++) { mem[ptr / 4 + i] = addHeapObject(array[i]); } WASM_VECTOR_LEN = array.length; return ptr; } function __wbg_adapter_180(arg0, arg1, arg2, arg3) { wasm.wasm_bindgen__convert__closures__invoke2_mut__h454a253a94872b2b(arg0, arg1, addHeapObject(arg2), addHeapObject(arg3)); } const BitBoxFinalization = (typeof FinalizationRegistry === 'undefined') ? { register: () => {}, unregister: () => {} } : new FinalizationRegistry(ptr => wasm.__wbg_bitbox_free(ptr >>> 0)); /** * BitBox client. Instantiate it using `bitbox02ConnectAuto()`. */ export class BitBox { static __wrap(ptr) { ptr = ptr >>> 0; const obj = Object.create(BitBox.prototype); obj.__wbg_ptr = ptr; BitBoxFinalization.register(obj, obj.__wbg_ptr, obj); return obj; } __destroy_into_raw() { const ptr = this.__wbg_ptr; this.__wbg_ptr = 0; BitBoxFinalization.unregister(this); return ptr; } free() { const ptr = this.__destroy_into_raw(); wasm.__wbg_bitbox_free(ptr); } /** * Invokes the device unlock and pairing. After this, stop using this instance and continue * with the returned instance of type `PairingBitBox`. * @returns {Promise<PairingBitBox>} */ unlockAndPair() { const ptr = this.__destroy_into_raw(); const ret = wasm.bitbox_unlockAndPair(ptr); return takeObject(ret); } } const PairedBitBoxFinalization = (typeof FinalizationRegistry === 'undefined') ? { register: () => {}, unregister: () => {} } : new FinalizationRegistry(ptr => wasm.__wbg_pairedbitbox_free(ptr >>> 0)); /** * Paired BitBox. This is where you can invoke most API functions like getting xpubs, displaying * receive addresses, etc. */ export class PairedBitBox { static __wrap(ptr) { ptr = ptr >>> 0; const obj = Object.create(PairedBitBox.prototype); obj.__wbg_ptr = ptr; PairedBitBoxFinalization.register(obj, obj.__wbg_ptr, obj); return obj; } __destroy_into_raw() { const ptr = this.__wbg_ptr; this.__wbg_ptr = 0; PairedBitBoxFinalization.unregister(this); return ptr; } free() { const ptr = this.__destroy_into_raw(); wasm.__wbg_pairedbitbox_free(ptr); } /** * Closes the BitBox connection. This also invokes the `on_close_cb` callback which was * provided to the connect method creating the connection. */ close() { const ptr = this.__destroy_into_raw(); wasm.pairedbitbox_close(ptr); } /** * @returns {Promise<DeviceInfo>} */ deviceInfo() { const ret = wasm.pairedbitbox_deviceInfo(this.__wbg_ptr); return takeObject(ret); } /** * Returns which product we are connected to. * @returns {Product} */ product() { const ret = wasm.pairedbitbox_product(this.__wbg_ptr); return takeObject(ret); } /** * Returns the firmware version, e.g. "9.18.0". * @returns {string} */ version() { let deferred1_0; let deferred1_1; try { const retptr = wasm.__wbindgen_add_to_stack_pointer(-16); wasm.pairedbitbox_version(retptr, this.__wbg_ptr); var r0 = getInt32Memory0()[retptr / 4 + 0]; var r1 = getInt32Memory0()[retptr / 4 + 1]; deferred1_0 = r0; deferred1_1 = r1; return getStringFromWasm0(r0, r1); } finally { wasm.__wbindgen_add_to_stack_pointer(16); wasm.__wbindgen_free(deferred1_0, deferred1_1, 1); } } /** * Returns the hex-encoded 4-byte root fingerprint. * @returns {Promise<string>} */ rootFingerprint() { const ret = wasm.pairedbitbox_rootFingerprint(this.__wbg_ptr); return takeObject(ret); } /** * Show recovery words on the Bitbox. * @returns {Promise<void>} */ showMnemonic() { const ret = wasm.pairedbitbox_showMnemonic(this.__wbg_ptr); return takeObject(ret); } /** * Retrieves an xpub. For non-standard keypaths, a warning is displayed on the BitBox even if * `display` is false. * @param {BtcCoin} coin * @param {Keypath} keypath * @param {XPubType} xpub_type * @param {boolean} display * @returns {Promise<string>} */ btcXpub(coin, keypath, xpub_type, display) { const ret = wasm.pairedbitbox_btcXpub(this.__wbg_ptr, addHeapObject(coin), addHeapObject(keypath), addHeapObject(xpub_type), display); return takeObject(ret); } /** * Before a multisig or policy script config can be used to display receive addresses or sign * transactions, it must be registered on the device. This function checks if the script config * was already registered. * * `keypath_account` must be set if the script config is multisig, and can be `undefined` if it * is a policy. * @param {BtcCoin} coin * @param {BtcScriptConfig} script_config * @param {Keypath | undefined} [keypath_account] * @returns {Promise<boolean>} */ btcIsScriptConfigRegistered(coin, script_config, keypath_account) { const ret = wasm.pairedbitbox_btcIsScriptConfigRegistered(this.__wbg_ptr, addHeapObject(coin), addHeapObject(script_config), isLikeNone(keypath_account) ? 0 : addHeapObject(keypath_account)); return takeObject(ret); } /** * Before a multisig or policy script config can be used to display receive addresses or sign * transcations, it must be registered on the device. * * If no name is provided, the user will be asked to enter it on the device instead. If * provided, it must be non-empty, smaller or equal to 30 chars, consist only of printable * ASCII characters, and contain no whitespace other than spaces. * * * `keypath_account` must be set if the script config is multisig, and can be `undefined` if it * is a policy. * @param {BtcCoin} coin * @param {BtcScriptConfig} script_config * @param {Keypath | undefined} keypath_account * @param {BtcRegisterXPubType} xpub_type * @param {string | undefined} [name] * @returns {Promise<void>} */ btcRegisterScriptConfig(coin, script_config, keypath_account, xpub_type, name) { var ptr0 = isLikeNone(name) ? 0 : passStringToWasm0(name, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); var len0 = WASM_VECTOR_LEN; const ret = wasm.pairedbitbox_btcRegisterScriptConfig(this.__wbg_ptr, addHeapObject(coin), addHeapObject(script_config), isLikeNone(keypath_account) ? 0 : addHeapObject(keypath_account), addHeapObject(xpub_type), ptr0, len0); return takeObject(ret); } /** * Retrieves a Bitcoin address at the provided keypath. * * For the simple script configs (single-sig), the keypath must follow the * BIP44/BIP49/BIP84/BIP86 conventions. * @param {BtcCoin} coin * @param {Keypath} keypath * @param {BtcScriptConfig} script_config * @param {boolean} display * @returns {Promise<string>} */ btcAddress(coin, keypath, script_config, display) { const ret = wasm.pairedbitbox_btcAddress(this.__wbg_ptr, addHeapObject(coin), addHeapObject(keypath), addHeapObject(script_config), display); return takeObject(ret); } /** * Sign a PSBT. * * If `force_script_config` is `undefined`, we attempt to infer the involved script * configs. For the simple script config (single sig), we infer the script config from the * involved redeem scripts and provided derviation paths. * * Multisig and policy configs are currently not inferred and must be provided using * `force_script_config`. * @param {BtcCoin} coin * @param {string} psbt * @param {BtcScriptConfigWithKeypath | undefined} force_script_config * @param {BtcFormatUnit} format_unit * @returns {Promise<string>} */ btcSignPSBT(coin, psbt, force_script_config, format_unit) { const ptr0 = passStringToWasm0(psbt, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); const len0 = WASM_VECTOR_LEN; const ret = wasm.pairedbitbox_btcSignPSBT(this.__wbg_ptr, addHeapObject(coin), ptr0, len0, isLikeNone(force_script_config) ? 0 : addHeapObject(force_script_config), addHeapObject(format_unit)); return takeObject(ret); } /** * @param {BtcCoin} coin * @param {BtcScriptConfigWithKeypath} script_config * @param {Uint8Array} msg * @returns {Promise<BtcSignMessageSignature>} */ btcSignMessage(coin, script_config, msg) { const ptr0 = passArray8ToWasm0(msg, wasm.__wbindgen_malloc); const len0 = WASM_VECTOR_LEN; const ret = wasm.pairedbitbox_btcSignMessage(this.__wbg_ptr, addHeapObject(coin), addHeapObject(script_config), ptr0, len0); return takeObject(ret); } /** * Does this device support ETH functionality? Currently this means BitBox02 Multi. * @returns {boolean} */ ethSupported() { const ret = wasm.pairedbitbox_cardanoSupported(this.__wbg_ptr); return ret !== 0; } /** * Query the device for an xpub. * @param {Keypath} keypath * @returns {Promise<string>} */ ethXpub(keypath) { const ret = wasm.pairedbitbox_ethXpub(this.__wbg_ptr, addHeapObject(keypath)); return takeObject(ret); } /** * Query the device for an Ethereum address. * @param {bigint} chain_id * @param {Keypath} keypath * @param {boolean} display * @returns {Promise<string>} */ ethAddress(chain_id, keypath, display) { const ret = wasm.pairedbitbox_ethAddress(this.__wbg_ptr, chain_id, addHeapObject(keypath), display); return takeObject(ret); } /** * Signs an Ethereum transaction. It returns a 65 byte signature (R, S, and 1 byte recID). * @param {bigint} chain_id * @param {Keypath} keypath * @param {EthTransaction} tx * @param {EthAddressCase | undefined} [address_case] * @returns {Promise<EthSignature>} */ ethSignTransaction(chain_id, keypath, tx, address_case) { const ret = wasm.pairedbitbox_ethSignTransaction(this.__wbg_ptr, chain_id, addHeapObject(keypath), addHeapObject(tx), isLikeNone(address_case) ? 0 : addHeapObject(address_case)); return takeObject(ret); } /** * Signs an Ethereum type 2 transaction according to EIP 1559. It returns a 65 byte signature (R, S, and 1 byte recID). * @param {Keypath} keypath * @param {Eth1559Transaction} tx * @param {EthAddressCase | undefined} [address_case] * @returns {Promise<EthSignature>} */ ethSign1559Transaction(keypath, tx, address_case) { const ret = wasm.pairedbitbox_ethSign1559Transaction(this.__wbg_ptr, addHeapObject(keypath), addHeapObject(tx), isLikeNone(address_case) ? 0 : addHeapObject(address_case)); return takeObject(ret); } /** * Signs an Ethereum message. The provided msg will be prefixed with "\x19Ethereum message\n" + * len(msg) in the hardware, e.g. "\x19Ethereum\n5hello" (yes, the len prefix is the ascii * representation with no fixed size or delimiter). It returns a 65 byte signature (R, S, and * 1 byte recID). 27 is added to the recID to denote an uncompressed pubkey. * @param {bigint} chain_id * @param {Keypath} keypath * @param {Uint8Array} msg * @returns {Promise<EthSignature>} */ ethSignMessage(chain_id, keypath, msg) { const ptr0 = passArray8ToWasm0(msg, wasm.__wbindgen_malloc); const len0 = WASM_VECTOR_LEN; const ret = wasm.pairedbitbox_ethSignMessage(this.__wbg_ptr, chain_id, addHeapObject(keypath), ptr0, len0); return takeObject(ret); } /** * Signs an Ethereum EIP-712 typed message. It returns a 65 byte signature (R, S, and 1 byte * recID). 27 is added to the recID to denote an uncompressed pubkey. * @param {bigint} chain_id * @param {Keypath} keypath * @param {any} msg * @returns {Promise<EthSignature>} */ ethSignTypedMessage(chain_id, keypath, msg) { const ret = wasm.pairedbitbox_ethSignTypedMessage(this.__wbg_ptr, chain_id, addHeapObject(keypath), addHeapObject(msg)); return takeObject(ret); } /** * Does this device support Cardano functionality? Currently this means BitBox02 Multi. * @returns {boolean} */ cardanoSupported() { const ret = wasm.pairedbitbox_cardanoSupported(this.__wbg_ptr); return ret !== 0; } /** * Query the device for xpubs. The result contains one xpub per requested keypath. Each xpub is * 64 bytes: 32 byte chain code + 32 byte pubkey. * @param {(Keypath)[]} keypaths * @returns {Promise<CardanoXpubs>} */ cardanoXpubs(keypaths) { const ptr0 = passArrayJsValueToWasm0(keypaths, wasm.__wbindgen_malloc); const len0 = WASM_VECTOR_LEN; const ret = wasm.pairedbitbox_cardanoXpubs(this.__wbg_ptr, ptr0, len0); return takeObject(ret); } /** * Query the device for a Cardano address. * @param {CardanoNetwork} network * @param {CardanoScriptConfig} script_config * @param {boolean} display * @returns {Promise<string>} */ cardanoAddress(network, script_config, display) { const ret = wasm.pairedbitbox_cardanoAddress(this.__wbg_ptr, addHeapObject(network), addHeapObject(script_config), display); return takeObject(ret); } /** * Sign a Cardano transaction. * @param {CardanoTransaction} transaction * @returns {Promise<CardanoSignTransactionResult>} */ cardanoSignTransaction(transaction) { const ret = wasm.pairedbitbox_cardanoSignTransaction(this.__wbg_ptr, addHeapObject(transaction)); return takeObject(ret); } /** * Invokes the BIP85-BIP39 workflow on the device, letting the user select the number of words * (12, 28, 24) and an index and display a derived BIP-39 mnemonic. * @returns {Promise<void>} */ bip85AppBip39() { const ret = wasm.pairedbitbox_bip85AppBip39(this.__wbg_ptr); return takeObject(ret); } } const PairingBitBoxFinalization = (typeof FinalizationRegistry === 'undefined') ? { register: () => {}, unregister: () => {} } : new FinalizationRegistry(ptr => wasm.__wbg_pairingbitbox_free(ptr >>> 0)); /** * BitBox in the pairing state. Use `getPairingCode()` to display the pairing code to the user and * `waitConfirm()` to proceed to the paired state. */ export class PairingBitBox { static __wrap(ptr) { ptr = ptr >>> 0; const obj = Object.create(PairingBitBox.prototype); obj.__wbg_ptr = ptr; PairingBitBoxFinalization.register(obj, obj.__wbg_ptr, obj); return obj; } __destroy_into_raw() { const ptr = this.__wbg_ptr; this.__wbg_ptr = 0; PairingBitBoxFinalization.unregister(this); return ptr; } free() { const ptr = this.__destroy_into_raw(); wasm.__wbg_pairingbitbox_free(ptr); } /** * If a pairing code confirmation is required, this returns the pairing code. You must display * it to the user and then call `waitConfirm()` to wait until the user confirms the code on * the BitBox. * * If the BitBox was paired before and the pairing was persisted, the pairing step is * skipped. In this case, `undefined` is returned. Also in this case, call `waitConfirm()` to * establish the encrypted connection. * @returns {string | undefined} */ getPairingCode() { try { const retptr = wasm.__wbindgen_add_to_stack_pointer(-16); wasm.pairingbitbox_getPairingCode(retptr, this.__wbg_ptr); var r0 = getInt32Memory0()[retptr / 4 + 0]; var r1 = getInt32Memory0()[retptr / 4 + 1]; let v1; if (r0 !== 0) { v1 = getStringFromWasm0(r0, r1).slice(); wasm.__wbindgen_free(r0, r1 * 1, 1); } return v1; } finally { wasm.__wbindgen_add_to_stack_pointer(16); } } /** * Proceed to the paired state. After this, stop using this instance and continue with the * returned instance of type `PairedBitBox`. * @returns {Promise<PairedBitBox>} */ waitConfirm() { const ptr = this.__destroy_into_raw(); const ret = wasm.pairingbitbox_waitConfirm(ptr); return takeObject(ret); } } export function __wbindgen_is_undefined(arg0) { const ret = getObject(arg0) === undefined; return ret; }; export function __wbindgen_in(arg0, arg1) { const ret = getObject(arg0) in getObject(arg1); return ret; }; export function __wbindgen_boolean_get(arg0) { const v = getObject(arg0); const ret = typeof(v) === 'boolean' ? (v ? 1 : 0) : 2; return ret; }; export function __wbindgen_is_null(arg0) { const ret = getObject(arg0) === null; return ret; }; export function __wbindgen_string_get(arg0, arg1) { const obj = getObject(arg1); const ret = typeof(obj) === 'string' ? obj : undefined; var ptr1 = isLikeNone(ret) ? 0 : passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); var len1 = WASM_VECTOR_LEN; getInt32Memory0()[arg0 / 4 + 1] = len1; getInt32Memory0()[arg0 / 4 + 0] = ptr1; }; export function __wbindgen_is_bigint(arg0) { const ret = typeof(getObject(arg0)) === 'bigint'; return ret; }; export function __wbindgen_is_object(arg0) { const val = getObject(arg0); const ret = typeof(val) === 'object' && val !== null; return ret; }; export function __wbindgen_is_string(arg0) { const ret = typeof(getObject(arg0)) === 'string'; return ret; }; export function __wbindgen_bigint_from_u64(arg0) { const ret = BigInt.asUintN(64, arg0); return addHeapObject(ret); }; export function __wbindgen_error_new(arg0, arg1) { const ret = new Error(getStringFromWasm0(arg0, arg1)); return addHeapObject(ret); }; export function __wbindgen_jsval_eq(arg0, arg1) { const ret = getObject(arg0) === getObject(arg1); return ret; }; export function __wbindgen_object_drop_ref(arg0) { takeObject(arg0); }; export function __wbindgen_string_new(arg0, arg1) { const ret = getStringFromWasm0(arg0, arg1); return addHeapObject(ret); }; export function __wbindgen_number_get(arg0, arg1) { const obj = getObject(arg1); const ret = typeof(obj) === 'number' ? obj : undefined; getFloat64Memory0()[arg0 / 8 + 1] = isLikeNone(ret) ? 0 : ret; getInt32Memory0()[arg0 / 4 + 0] = !isLikeNone(ret); }; export function __wbindgen_bigint_from_i64(arg0) { const ret = arg0; return addHeapObject(ret); }; export function __wbg_getWebHIDDevice_145b9ade8b333349() { return handleError(function (arg0, arg1, arg2) { const ret = getWebHIDDevice(arg0, arg1, takeObject(arg2)); return addHeapObject(ret); }, arguments) }; export function __wbg_getBridgeDevice_2d6ee40723b6cae5() { return handleError(function (arg0) { const ret = getBridgeDevice(takeObject(arg0)); return addHeapObject(ret); }, arguments) }; export function __wbg_jsSleep_3b4d919428440b4b(arg0) { const ret = jsSleep(arg0); return addHeapObject(ret); }; export function __wbg_bitbox_new(arg0) { const ret = BitBox.__wrap(arg0); return addHeapObject(ret); }; export function __wbg_pairingbitbox_new(arg0) { const ret = PairingBitBox.__wrap(arg0); return addHeapObject(ret); }; export function __wbg_pairedbitbox_new(arg0) { const ret = PairedBitBox.__wrap(arg0); return addHeapObject(ret); }; export function __wbg_crypto_1d1f22824a6a080c(arg0) { const ret = getObject(arg0).crypto; return addHeapObject(ret); }; export function __wbg_process_4a72847cc503995b(arg0) { const ret = getObject(arg0).process; return addHeapObject(ret); }; export function __wbg_versions_f686565e586dd935(arg0) { const ret = getObject(arg0).versions; return addHeapObject(ret); }; export function __wbg_node_104a2ff8d6ea03a2(arg0) { const ret = getObject(arg0).node; return addHeapObject(ret); }; export function __wbg_require_cca90b1a94a0255b() { return handleError(function () { const ret = module.require; return addHeapObject(ret); }, arguments) }; export function __wbg_msCrypto_eb05e62b530a1508(arg0) { const ret = getObject(arg0).msCrypto; return addHeapObject(ret); }; export function __wbg_randomFillSync_5c9c955aa56b6049() { return handleError(function (arg0, arg1) { getObject(arg0).randomFillSync(takeObject(arg1)); }, arguments) }; export function __wbg_getRandomValues_3aa56aa6edec874c() { return handleError(function (arg0, arg1) { getObject(arg0).getRandomValues(getObject(arg1)); }, arguments) }; export function __wbindgen_object_clone_ref(arg0) { const ret = getObject(arg0); return addHeapObject(ret); }; export function __wbindgen_jsval_loose_eq(arg0, arg1) { const ret = getObject(arg0) == getObject(arg1); return ret; }; export function __wbindgen_as_number(arg0) { const ret = +getObject(arg0); return ret; }; export function __wbindgen_number_new(arg0) { const ret = arg0; return addHeapObject(ret); }; export function __wbg_getwithrefkey_edc2c8960f0f1191(arg0, arg1) { const ret = getObject(arg0)[getObject(arg1)]; return addHeapObject(ret); }; export function __wbg_set_f975102236d3c502(arg0, arg1, arg2) { getObject(arg0)[takeObject(arg1)] = takeObject(arg2); }; export function __wbg_getItem_164e8e5265095b87() { return handleError(function (arg0, arg1, arg2, arg3) { const ret = getObject(arg1).getItem(getStringFromWasm0(arg2, arg3)); var ptr1 = isLikeNone(ret) ? 0 : passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); var len1 = WASM_VECTOR_LEN; getInt32Memory0()[arg0 / 4 + 1] = len1; getInt32Memory0()[arg0 / 4 + 0] = ptr1; }, arguments) }; export function __wbg_setItem_ba2bb41d73dac079() { return handleError(function (arg0, arg1, arg2, arg3, arg4) { getObject(arg0).setItem(getStringFromWasm0(arg1, arg2), getStringFromWasm0(arg3, arg4)); }, arguments) }; export function __wbg_instanceof_Window_f401953a2cf86220(arg0) { let result; try { result = getObject(arg0) instanceof Window; } catch (_) { result = false; } const ret = result; return ret; }; export function __wbg_localStorage_e381d34d0c40c761() { return handleError(function (arg0) { const ret = getObject(arg0).localStorage; return isLikeNone(ret) ? 0 : addHeapObject(ret); }, arguments) }; export function __wbg_queueMicrotask_3cbae2ec6b6cd3d6(arg0) { const ret = getObject(arg0).queueMicrotask; return addHeapObject(ret); }; export function __wbindgen_is_function(arg0) { const ret = typeof(getObject(arg0)) === 'function'; return ret; }; export function __wbindgen_cb_drop(arg0) { const obj = takeObject(arg0).original; if (obj.cnt-- == 1) { obj.a = 0; return true; } const ret = false; return ret; }; export function __wbg_queueMicrotask_481971b0d87f3dd4(arg0) { queueMicrotask(getObject(arg0)); }; export function __wbg_self_ce0dbfc45cf2f5be() { return handleError(function () { const ret = self.self; return addHeapObject(ret); }, arguments) }; export function __wbg_window_c6fb939a7f436783() { return handleError(function () { const ret = window.window; return addHeapObject(ret); }, arguments) }; export function __wbg_globalThis_d1e6af4856ba331b() { return handleError(function () { const ret = globalThis.globalThis; return addHeapObject(ret); }, arguments) }; export function __wbg_global_207b558942527489() { return handleError(function () { const ret = global.global; return addHeapObject(ret); }, arguments) }; export function __wbg_newnoargs_e258087cd0daa0ea(arg0, arg1) { const ret = new Function(getStringFromWasm0(arg0, arg1)); return addHeapObject(ret); }; export function __wbg_length_cd7af8117672b8b8(arg0) { const ret = getObject(arg0).length; return ret; }; export function __wbg_new_16b304a2cfa7ff4a() { const ret = new Array(); return addHeapObject(ret); }; export function __wbg_next_40fc327bfc8770e6(arg0) { const ret = getObject(arg0).next; return addHeapObject(ret); }; export function __wbg_value_d93c65011f51a456(arg0) { const ret = getObject(arg0).value; return addHeapObject(ret); }; export function __wbg_iterator_2cee6dadfd956dfa() { const ret = Symbol.iterator; return addHeapObject(ret); }; export function __wbg_new_72fb9a18b5ae2624() { const ret = new Object(); return addHeapObject(ret); }; export function __wbg_get_bd8e338fbd5f5cc8(arg0, arg1) { const ret = getObject(arg0)[arg1 >>> 0]; return addHeapObject(ret); }; export function __wbg_set_d4638f722068f043(arg0, arg1, arg2) { getObject(arg0)[arg1 >>> 0] = takeObject(arg2); }; export function __wbg_isArray_2ab64d95e09ea0ae(arg0) { const ret = Array.isArray(getObject(arg0)); return ret; }; export function __wbg_instanceof_ArrayBuffer_836825be07d4c9d2(arg0) { let result; try { result = getObject(arg0) instanceof ArrayBuffer; } catch (_) { result = false; } const ret = result; return ret; }; export function __wbg_instanceof_Error_e20bb56fd5591a93(arg0) { let result; try { result = getObject(arg0) instanceof Error; } catch (_) { result = false; } const ret = result; return ret; }; export function __wbg_message_5bf28016c2b49cfb(arg0) { const ret = getObject(arg0).message; return addHeapObject(ret); }; export function __wbg_call_27c0f87801dedf93() { return handleError(function (arg0, arg1) { const ret = getObject(arg0).call(getObject(arg1)); return addHeapObject(ret); }, arguments) }; export function __wbg_call_b3ca7c6051f9bec1() { return handleError(function (arg0, arg1, arg2) { const ret = getObject(arg0).call(getObject(arg1), getObject(arg2)); return addHeapObject(ret); }, arguments) }; export function __wbg_instanceof_Map_87917e0a7aaf4012(arg0) { let result; try { result = getObject(arg0) instanceof Map; } catch (_) { result = false; } const ret = result; return ret; }; export function __wbg_next_196c84450b364254() { return handleError(function (arg0) { const ret = getObject(arg0).next(); return addHeapObject(ret); }, arguments) }; export function __wbg_done_298b57d23c0fc80c(arg0) { const ret = getObject(arg0).done; return ret; }; export function __wbg_isSafeInteger_f7b04ef02296c4d2(arg0) { const ret = Number.isSafeInteger(getObject(arg0)); return ret; }; export function __wbg_entries_95cc2c823b285a09(arg0) { const ret = Object.entries(getObject(arg0)); return addHeapObject(ret); }; export function __wbg_get_e3c254076557e348() { return handleError(function (arg0, arg1) { const ret = Reflect.get(getObject(arg0), getObject(arg1)); return addHeapObject(ret); }, arguments) }; export function __wbg_set_1f9b04f170055d33() { return handleError(function (arg0, arg1, arg2) { const ret = Reflect.set(getObject(arg0), getObject(arg1), getObject(arg2)); return ret; }, arguments) }; export function __wbg_buffer_12d079cc21e14bdb(arg0) { const ret = getObject(arg0).buffer; return addHeapObject(ret); }; export function __wbg_stringify_8887fe74e1c50d81() { return handleError(function (arg0) { const ret = JSON.stringify(getObject(arg0)); return addHeapObject(ret); }, arguments) }; export function __wbg_new_81740750da40724f(arg0, arg1) { try { var state0 = {a: arg0, b: arg1}; var cb0 = (arg0, arg1) => { const a = state0.a; state0.a = 0; try { return __wbg_adapter_180(a, state0.b, arg0, arg1); } finally { state0.a = a; } }; const ret = new Promise(cb0); return addHeapObject(ret); } finally { state0.a = state0.b = 0; } }; export function __wbg_resolve_b0083a7967828ec8(arg0) { const ret = Promise.resolve(getObject(arg0)); return addHeapObject(ret); }; export function __wbg_then_0c86a60e8fcfe9f6(arg0, arg1) { const ret = getObject(arg0).then(getObject(arg1)); return addHeapObject(ret); }; export function __wbg_then_a73caa9a87991566(arg0, arg1, arg2) { const ret = getObject(arg0).then(getObject(arg1), getObject(arg2)); return addHeapObject(ret); }; export function __wbg_newwithbyteoffsetandlength_aa4a17c33a06e5cb(arg0, arg1, arg2) { const ret = new Uint8Array(getObject(arg0), arg1 >>> 0, arg2 >>> 0); return addHeapObject(ret); }; export function __wbg_new_63b92bc8671ed464(arg0) { const ret = new Uint8Array(getObject(arg0)); return addHeapObject(ret); }; export function __wbg_instanceof_Uint8Array_2b3bbecd033d19f6(arg0) { let result; try { result = getObject(arg0) instanceof Uint8Array; } catch (_) { result = false; } const ret = result; return ret; }; export function __wbg_newwithlength_e9b4878cebadb3d3(arg0) { const ret = new Uint8Array(arg0 >>> 0); return addHeapObject(ret); }; export function __wbg_subarray_a1f73cd4b5b42fe1(arg0, arg1, arg2) { const ret = getObject(arg0).subarray(arg1 >>> 0, arg2 >>> 0); return addHeapObject(ret); }; export function __wbg_length_c20a40f15020d68a(arg0) { const ret = getObject(arg0).length; return ret; }; export function __wbg_set_a47bac70306a19a7(arg0, arg1, arg2) { getObject(arg0).set(getObject(arg1), arg2 >>> 0); }; export function __wbindgen_bigint_get_as_i64(arg0, arg1) { const v = getObject(arg1); const ret = typeof(v) === 'bigint' ? v : undefined; getBigInt64Memory0()[arg0 / 8 + 1] = isLikeNone(ret) ? BigInt(0) : ret; getInt32Memory0()[arg0 / 4 + 0] = !isLikeNone(ret); }; export function __wbindgen_debug_string(arg0, arg1) { const ret = debugString(getObject(arg1)); const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); const len1 = WASM_VECTOR_LEN; getInt32Memory0()[arg0 / 4 + 1] = len1; getInt32Memory0()[arg0 / 4 + 0] = ptr1; }; export function __wbindgen_throw(arg0, arg1) { throw new Error(getStringFromWasm0(arg0, arg1)); }; export function __wbindgen_memory() { const ret = wasm.memory; return addHeapObject(ret); }; export function __wbindgen_closure_wrapper2255(arg0, arg1, arg2) { const ret = makeMutClosure(arg0, arg1, 232, __wbg_adapter_52); return addHeapObject(ret); };