bindingx-web-polyfill
Version:
The web polyfill for BindingX.
431 lines (277 loc) • 8.54 kB
JavaScript
/**
Copyright 2018 Alibaba Group
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
'use strict';
import assign from 'object-assign';
function Quaternion(x, y, z, w) {
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._w = (w !== undefined) ? w : 1;
}
Quaternion.prototype = {
constructor: Quaternion,
get x() {
return this._x;
},
set x(value) {
this._x = value;
this.onChangeCallback();
},
get y() {
return this._y;
},
set y(value) {
this._y = value;
this.onChangeCallback();
},
get z() {
return this._z;
},
set z(value) {
this._z = value;
this.onChangeCallback();
},
get w() {
return this._w;
},
set w(value) {
this._w = value;
this.onChangeCallback();
},
set: function(x, y, z, w) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this.onChangeCallback();
return this;
},
clone: function() {
return new this.constructor(this._x, this._y, this._z, this._w);
},
copy: function(quaternion) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this.onChangeCallback();
return this;
},
setFromEuler: function(euler, update) {
if ((euler && euler.isEuler) === false) {
throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.');
}
// http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
var c1 = Math.cos(euler._x / 2);
var c2 = Math.cos(euler._y / 2);
var c3 = Math.cos(euler._z / 2);
var s1 = Math.sin(euler._x / 2);
var s2 = Math.sin(euler._y / 2);
var s3 = Math.sin(euler._z / 2);
var order = euler.order;
if (order === 'XYZ') {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if (order === 'YXZ') {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if (order === 'ZXY') {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if (order === 'ZYX') {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if (order === 'YZX') {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if (order === 'XZY') {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
}
if (update !== false) this.onChangeCallback();
return this;
},
setFromAxisAngle: function(axis, angle) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
var halfAngle = angle / 2,
s = Math.sin(halfAngle);
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos(halfAngle);
this.onChangeCallback();
return this;
},
// normalize: function() {
//
// var l = this.length();
//
// if (l === 0) {
//
// this._x = 0;
// this._y = 0;
// this._z = 0;
// this._w = 1;
//
// } else {
//
// l = 1 / l;
//
// this._x = this._x * l;
// this._y = this._y * l;
// this._z = this._z * l;
// this._w = this._w * l;
//
// }
//
// this.onChangeCallback();
//
// return this;
//
// },
multiply: function(q, p) {
if (p !== undefined) {
console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.');
return this.multiplyQuaternions(q, p);
}
return this.multiplyQuaternions(this, q);
},
multiplyQuaternions: function(a, b) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
var qax = a._x,
qay = a._y,
qaz = a._z,
qaw = a._w;
var qbx = b._x,
qby = b._y,
qbz = b._z,
qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this.onChangeCallback();
return this;
},
slerp: function(qb, t) {
if (t === 0) return this;
if (t === 1) return this.copy(qb);
var x = this._x,
y = this._y,
z = this._z,
w = this._w;
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if (cosHalfTheta < 0) {
this._w = -qb._w;
this._x = -qb._x;
this._y = -qb._y;
this._z = -qb._z;
cosHalfTheta = -cosHalfTheta;
} else {
this.copy(qb);
}
if (cosHalfTheta >= 1.0) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
var sinHalfTheta = Math.sqrt(1.0 - cosHalfTheta * cosHalfTheta);
if (Math.abs(sinHalfTheta) < 0.001) {
this._w = 0.5 * (w + this._w);
this._x = 0.5 * (x + this._x);
this._y = 0.5 * (y + this._y);
this._z = 0.5 * (z + this._z);
return this;
}
var halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
var ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,
ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
this._w = (w * ratioA + this._w * ratioB);
this._x = (x * ratioA + this._x * ratioB);
this._y = (y * ratioA + this._y * ratioB);
this._z = (z * ratioA + this._z * ratioB);
this.onChangeCallback();
return this;
},
onChange: function(callback) {
this.onChangeCallback = callback;
return this;
},
onChangeCallback: function() {}
};
assign(Quaternion, {
slerp: function(qa, qb, qm, t) {
return qm.copy(qa).slerp(qb, t);
},
slerpFlat: function(
dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
// fuzz-free, array-based Quaternion SLERP operation
var x0 = src0[srcOffset0 + 0],
y0 = src0[srcOffset0 + 1],
z0 = src0[srcOffset0 + 2],
w0 = src0[srcOffset0 + 3],
x1 = src1[srcOffset1 + 0],
y1 = src1[srcOffset1 + 1],
z1 = src1[srcOffset1 + 2],
w1 = src1[srcOffset1 + 3];
if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
var s = 1 - t,
cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = (cos >= 0 ? 1 : -1),
sqrSin = 1 - cos * cos;
// Skip the Slerp for tiny steps to avoid numeric problems:
if (sqrSin > Number.EPSILON) {
var sin = Math.sqrt(sqrSin),
len = Math.atan2(sin, cos * dir);
s = Math.sin(s * len) / sin;
t = Math.sin(t * len) / sin;
}
var tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir;
// Normalize in case we just did a lerp:
if (s === 1 - t) {
var f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[dstOffset] = x0;
dst[dstOffset + 1] = y0;
dst[dstOffset + 2] = z0;
dst[dstOffset + 3] = w0;
}
});
export default Quaternion;