UNPKG

binary-tree-typed

Version:

Binary Tree. Javascript & Typescript Data Structure.

252 lines (206 loc) 8.38 kB
![NPM](https://img.shields.io/npm/l/binary-tree-typed) ![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed) ![npm](https://img.shields.io/npm/dw/binary-tree-typed) ![eslint](https://aleen42.github.io/badges/src/eslint.svg) ![npm bundle size](https://img.shields.io/bundlephobia/minzip/binary-tree-typed) ![npm bundle size](https://img.shields.io/bundlephobia/min/binary-tree-typed) ![npm](https://img.shields.io/npm/v/binary-tree-typed) # What ## Brief This is a standalone Binary Tree data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete [data-structure-typed](https://www.npmjs.com/package/data-structure-typed) package # How ## install ### npm ```bash npm i binary-tree-typed --save ``` ### yarn ```bash yarn add binary-tree-typed ``` ### snippet [//]: # (No deletion!!! Start of Example Replace Section) ### determine loan approval using a decision tree ```typescript // Decision tree structure const loanDecisionTree = new BinaryTree<string>( ['stableIncome', 'goodCredit', 'Rejected', 'Approved', 'Rejected'], { isDuplicate: true } ); function determineLoanApproval( node?: BinaryTreeNode<string> | null, conditions?: { [key: string]: boolean } ): string { if (!node) throw new Error('Invalid node'); // If it's a leaf node, return the decision result if (!node.left && !node.right) return node.key; // Check if a valid condition exists for the current node's key return conditions?.[node.key] ? determineLoanApproval(node.left, conditions) : determineLoanApproval(node.right, conditions); } // Test case 1: Stable income and good credit score console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: true })); // 'Approved' // Test case 2: Stable income but poor credit score console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: false })); // 'Rejected' // Test case 3: No stable income console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: true })); // 'Rejected' // Test case 4: No stable income and poor credit score console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: false })); // 'Rejected' ``` ### evaluate the arithmetic expression represented by the binary tree ```typescript const expressionTree = new BinaryTree<number | string>(['+', 3, '*', null, null, 5, '-', null, null, 2, 8]); function evaluate(node?: BinaryTreeNode<number | string> | null): number { if (!node) return 0; if (typeof node.key === 'number') return node.key; const leftValue = evaluate(node.left); // Evaluate the left subtree const rightValue = evaluate(node.right); // Evaluate the right subtree // Perform the operation based on the current node's operator switch (node.key) { case '+': return leftValue + rightValue; case '-': return leftValue - rightValue; case '*': return leftValue * rightValue; case '/': return rightValue !== 0 ? leftValue / rightValue : 0; // Handle division by zero default: throw new Error(`Unsupported operator: ${node.key}`); } } console.log(evaluate(expressionTree.root)); // -27 ``` [//]: # (No deletion!!! End of Example Replace Section) ## API docs & Examples [API Docs](https://data-structure-typed-docs.vercel.app) [Live Examples](https://vivid-algorithm.vercel.app) <a href="https://github.com/zrwusa/vivid-algorithm" target="_blank">Examples Repository</a> ## Data Structures <table> <thead> <tr> <th>Data Structure</th> <th>Unit Test</th> <th>Performance Test</th> <th>API Docs</th> </tr> </thead> <tbody> <tr> <td>Binary Tree</td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><a href="https://data-structure-typed-docs.vercel.app/classes/BinaryTree.html"><span>Binary Tree</span></a></td> </tr> </tbody> </table> ## Standard library data structure comparison <table> <thead> <tr> <th>Data Structure Typed</th> <th>C++ STL</th> <th>java.util</th> <th>Python collections</th> </tr> </thead> <tbody> <tr> <td>BinaryTree&lt;K, V&gt;</td> <td>-</td> <td>-</td> <td>-</td> </tr> </tbody> </table> ## Benchmark [//]: # (No deletion!!! Start of Replace Section) <div class="json-to-html-collapse clearfix 0"> <div class='collapsible level0' ><span class='json-to-html-label'>binary-tree</span></div> <div class="content"><table style="display: table; width:100%; table-layout: fixed;"><tr><th>test name</th><th>time taken (ms)</th><th>executions per sec</th><th>sample deviation</th></tr><tr><td>1,000 add randomly</td><td>12.35</td><td>80.99</td><td>7.17e-5</td></tr><tr><td>1,000 add & delete randomly</td><td>15.98</td><td>62.58</td><td>7.98e-4</td></tr><tr><td>1,000 addMany</td><td>10.96</td><td>91.27</td><td>0.00</td></tr><tr><td>1,000 get</td><td>18.61</td><td>53.73</td><td>0.00</td></tr><tr><td>1,000 dfs</td><td>164.20</td><td>6.09</td><td>0.04</td></tr><tr><td>1,000 bfs</td><td>58.84</td><td>17.00</td><td>0.01</td></tr><tr><td>1,000 morris</td><td>256.66</td><td>3.90</td><td>7.70e-4</td></tr></table></div> </div> [//]: # (No deletion!!! End of Replace Section) ## Built-in classic algorithms <table> <thead> <tr> <th>Algorithm</th> <th>Function Description</th> <th>Iteration Type</th> </tr> </thead> <tbody> <tr> <td>Binary Tree DFS</td> <td>Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree, and then the right subtree, using recursion. </td> <td>Recursion + Iteration</td> </tr> <tr> <td>Binary Tree BFS</td> <td>Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level from left to right. </td> <td>Iteration</td> </tr> <tr> <td>Binary Tree Morris</td> <td>Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree traversal without additional stack or recursion. </td> <td>Iteration</td> </tr> </tbody> </table> ## Software Engineering Design Standards <table> <tr> <th>Principle</th> <th>Description</th> </tr> <tr> <td>Practicality</td> <td>Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.</td> </tr> <tr> <td>Extensibility</td> <td>Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.</td> </tr> <tr> <td>Modularization</td> <td>Includes data structure modularization and independent NPM packages.</td> </tr> <tr> <td>Efficiency</td> <td>All methods provide time and space complexity, comparable to native JS performance.</td> </tr> <tr> <td>Maintainability</td> <td>Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.</td> </tr> <tr> <td>Testability</td> <td>Automated and customized unit testing, performance testing, and integration testing.</td> </tr> <tr> <td>Portability</td> <td>Plans for porting to Java, Python, and C++, currently achieved to 80%.</td> </tr> <tr> <td>Reusability</td> <td>Fully decoupled, minimized side effects, and adheres to OOP.</td> </tr> <tr> <td>Security</td> <td>Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.</td> </tr> <tr> <td>Scalability</td> <td>Data structure software does not involve load issues.</td> </tr> </table>