UNPKG

bigjs

Version:

A big integer library for JS, based on Leemon, with focus on prime numbers and cryptography

1,429 lines (1,302 loc) 55 kB
//////////////////////////////////////////////////////////////////////////////////////// // Big Integer Library v. 5.4 // Created 2000, last modified 2009 // Leemon Baird // www.leemon.com // // Version history: // v 5.4 3 Oct 2009 // - added "var i" to greaterShift() so i is not global. (Thanks to PŽter Szab— for finding that bug) // // v 5.3 21 Sep 2009 // - added randProbPrime(k) for probable primes // - unrolled loop in mont_ (slightly faster) // - millerRabin now takes a bigInt parameter rather than an int // // v 5.2 15 Sep 2009 // - fixed capitalization in call to int2bigInt in randBigInt // (thanks to Emili Evripidou, Reinhold Behringer, and Samuel Macaleese for finding that bug) // // v 5.1 8 Oct 2007 // - renamed inverseModInt_ to inverseModInt since it doesn't change its parameters // - added functions GCD and randBigInt, which call GCD_ and randBigInt_ // - fixed a bug found by Rob Visser (see comment with his name below) // - improved comments // // This file is public domain. You can use it for any purpose without restriction. // I do not guarantee that it is correct, so use it at your own risk. If you use // it for something interesting, I'd appreciate hearing about it. If you find // any bugs or make any improvements, I'd appreciate hearing about those too. // It would also be nice if my name and URL were left in the comments. But none // of that is required. // // This code defines a bigInt library for arbitrary-precision integers. // A bigInt is an array of integers storing the value in chunks of bpe bits, // little endian (buff[0] is the least significant word). // Negative bigInts are stored two's complement. Almost all the functions treat // bigInts as nonnegative. The few that view them as two's complement say so // in their comments. Some functions assume their parameters have at least one // leading zero element. Functions with an underscore at the end of the name put // their answer into one of the arrays passed in, and have unpredictable behavior // in case of overflow, so the caller must make sure the arrays are big enough to // hold the answer. But the average user should never have to call any of the // underscored functions. Each important underscored function has a wrapper function // of the same name without the underscore that takes care of the details for you. // For each underscored function where a parameter is modified, that same variable // must not be used as another argument too. So, you cannot square x by doing // multMod_(x,x,n). You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n). // Or simply use the multMod(x,x,n) function without the underscore, where // such issues never arise, because non-underscored functions never change // their parameters; they always allocate new memory for the answer that is returned. // // These functions are designed to avoid frequent dynamic memory allocation in the inner loop. // For most functions, if it needs a BigInt as a local variable it will actually use // a global, and will only allocate to it only when it's not the right size. This ensures // that when a function is called repeatedly with same-sized parameters, it only allocates // memory on the first call. // // Note that for cryptographic purposes, the calls to Math.random() must // be replaced with calls to a better pseudorandom number generator. // // In the following, "bigInt" means a bigInt with at least one leading zero element, // and "integer" means a nonnegative integer less than radix. In some cases, integer // can be negative. Negative bigInts are 2s complement. // // The following functions do not modify their inputs. // Those returning a bigInt, string, or Array will dynamically allocate memory for that value. // Those returning a boolean will return the integer 0 (false) or 1 (true). // Those returning boolean or int will not allocate memory except possibly on the first // time they're called with a given parameter size. // // bigInt add(x,y) //return (x+y) for bigInts x and y. // bigInt addInt(x,n) //return (x+n) where x is a bigInt and n is an integer. // string bigInt2str(x,base) //return a string form of bigInt x in a given base, with 2 <= base <= 95 // int bitSize(x) //return how many bits long the bigInt x is, not counting leading zeros // bigInt dup(x) //return a copy of bigInt x // boolean equals(x,y) //is the bigInt x equal to the bigint y? // boolean equalsInt(x,y) //is bigint x equal to integer y? // bigInt expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed // Array findPrimes(n) //return array of all primes less than integer n // bigInt GCD(x,y) //return greatest common divisor of bigInts x and y (each with same number of elements). // boolean greater(x,y) //is x>y? (x and y are nonnegative bigInts) // boolean greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y? // bigInt int2bigInt(t,n,m) //return a bigInt equal to integer t, with at least n bits and m array elements // bigInt inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null // int inverseModInt(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse // boolean isZero(x) //is the bigInt x equal to zero? // boolean millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is bigInt, 1<b<x) // boolean millerRabinInt(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is int, 1<b<x) // bigInt mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n. // int modInt(x,n) //return x mod n for bigInt x and integer n. // bigInt mult(x,y) //return x*y for bigInts x and y. This is faster when y<x. // bigInt multMod(x,y,n) //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x. // boolean negative(x) //is bigInt x negative? // bigInt powMod(x,y,n) //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n. // bigInt randBigInt(n,s) //return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1. // bigInt randTruePrime(k) //return a new, random, k-bit, true prime bigInt using Maurer's algorithm. // bigInt randProbPrime(k) //return a new, random, k-bit, probable prime bigInt (probability it's composite less than 2^-80). // bigInt str2bigInt(s,b,n,m) //return a bigInt for number represented in string s in base b with at least n bits and m array elements // bigInt sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement // bigInt trim(x,k) //return a copy of x with exactly k leading zero elements // // // The following functions each have a non-underscored version, which most users should call instead. // These functions each write to a single parameter, and the caller is responsible for ensuring the array // passed in is large enough to hold the result. // // void addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer // void add_(x,y) //do x=x+y for bigInts x and y // void copy_(x,y) //do x=y on bigInts x and y // void copyInt_(x,n) //do x=n on bigInt x and integer n // void GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). (This never overflows its array). // boolean inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist // void mod_(x,n) //do x=x mod n for bigInts x and n. (This never overflows its array). // void mult_(x,y) //do x=x*y for bigInts x and y. // void multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n. // void powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1. // void randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1. // void randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb. // void sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement. // // The following functions do NOT have a non-underscored version. // They each write a bigInt result to one or more parameters. The caller is responsible for // ensuring the arrays passed in are large enough to hold the results. // // void addShift_(x,y,ys) //do x=x+(y<<(ys*bpe)) // void carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits. // void divide_(x,y,q,r) //divide x by y giving quotient q and remainder r // int divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder. (This never overflows its array). // int eGCD_(x,y,d,a,b) //sets a,b,d to positive bigInts such that d = GCD_(x,y) = a*x-b*y // void halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement. (This never overflows its array). // void leftShift_(x,n) //left shift bigInt x by n bits. n<bpe. // void linComb_(x,y,a,b) //do x=a*x+b*y for bigInts x and y and integers a and b // void linCombShift_(x,y,b,ys) //do x=x+b*(y<<(ys*bpe)) for bigInts x and y, and integers b and ys // void mont_(x,y,n,np) //Montgomery multiplication (see comments where the function is defined) // void multInt_(x,n) //do x=x*n where x is a bigInt and n is an integer. // void rightShift_(x,n) //right shift bigInt x by n bits. 0 <= n < bpe. (This never overflows its array). // void squareMod_(x,n) //do x=x*x mod n for bigInts x,n // void subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement. // // The following functions are based on algorithms from the _Handbook of Applied Cryptography_ // powMod_() = algorithm 14.94, Montgomery exponentiation // eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_ // GCD_() = algorothm 14.57, Lehmer's algorithm // mont_() = algorithm 14.36, Montgomery multiplication // divide_() = algorithm 14.20 Multiple-precision division // squareMod_() = algorithm 14.16 Multiple-precision squaring // randTruePrime_() = algorithm 4.62, Maurer's algorithm // millerRabin() = algorithm 4.24, Miller-Rabin algorithm // // Profiling shows: // randTruePrime_() spends: // 10% of its time in calls to powMod_() // 85% of its time in calls to millerRabin() // millerRabin() spends: // 99% of its time in calls to powMod_() (always with a base of 2) // powMod_() spends: // 94% of its time in calls to mont_() (almost always with x==y) // // This suggests there are several ways to speed up this library slightly: // - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window) // -- this should especially focus on being fast when raising 2 to a power mod n // - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test // - tune the parameters in randTruePrime_(), including c, m, and recLimit // - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking // within the loop when all the parameters are the same length. // // There are several ideas that look like they wouldn't help much at all: // - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway) // - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32) // - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square // followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that // method would be slower. This is unfortunate because the code currently spends almost all of its time // doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring // would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded // sentences that seem to imply it's faster to do a non-modular square followed by a single // Montgomery reduction, but that's obviously wrong. //////////////////////////////////////////////////////////////////////////////////////// //globals var mask = 0; //AND this with an array element to chop it down to bpe bits var radix = mask + 1; //equals 2^bpe. A single 1 bit to the left of the last bit of mask. //the digits for converting to different bases var digitsStr = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-'; //initialize the global variables for (bpe = 0; (1 << (bpe + 1)) > (1 << bpe); bpe++); //bpe=number of bits in the mantissa on this platform bpe >>= 1; //bpe=number of bits in one element of the array representing the bigInt var mask = (1 << bpe) - 1; //AND the mask with an integer to get its bpe least significant bits var radix = mask + 1; //2^bpe. a single 1 bit to the left of the first bit of mask var one = int2bigInt(1, 1, 1); //constant used in powMod_() //the following global variables are scratchpad memory to //reduce dynamic memory allocation in the inner loop var t = new Array(0); var ss = t; //used in mult_() var s0 = t; //used in multMod_(), squareMod_() var s1 = t; //used in powMod_(), multMod_(), squareMod_() var s2 = t; //used in powMod_(), multMod_() var s3 = t; //used in powMod_() var s4 = t; var s5 = t; //used in mod_() var s6 = t; //used in bigInt2str() var s7 = t; //used in powMod_() var T = t; //used in GCD_() var sa = t; //used in mont_() var mr_x1 = t; var mr_r = t; var mr_a = t; //used in millerRabin() var eg_v = t; var eg_u = t; var eg_A = t; var eg_B = t; var eg_C = t; var eg_D = t; //used in eGCD_(), inverseMod_() var md_q1 = t; var md_q2 = t; var md_q3 = t; var md_r = t; var md_r1 = t; var md_r2 = t; var md_tt = t; //used in mod_() var primes = t; var pows = t; var s_i = t; var s_i2 = t; var s_R = t; var s_rm = t; var s_q = t; var s_n1 = t; var s_a = t; var s_r2 = t; var s_n = t; var s_b = t; var s_d = t; var s_x1 = t; var s_x2 = t, s_aa = t; //used in randTruePrime_() var rpprb = t; //used in randProbPrimeRounds() (which also uses "primes") //////////////////////////////////////////////////////////////////////////////////////// //return array of all primes less than integer n function findPrimes(n) { var i, s, p, ans; s = new Array(n); for (i = 0; i < n; i++) s[i] = 0; s[0] = 2; p = 0; //first p elements of s are primes, the rest are a sieve for (; s[p] < n;) { //s[p] is the pth prime for (i = s[p] * s[p]; i < n; i += s[p]) //mark multiples of s[p] s[i] = 1; p++; s[p] = s[p - 1] + 1; for (; s[p] < n && s[s[p]]; s[p]++); //find next prime (where s[p]==0) } ans = new Array(p); for (i = 0; i < p; i++) ans[i] = s[i]; return ans; } //does a single round of Miller-Rabin base b consider x to be a possible prime? //x is a bigInt, and b is an integer, with b<x function millerRabinInt(x, b) { if (mr_x1.length != x.length) { mr_x1 = dup(x); mr_r = dup(x); mr_a = dup(x); } copyInt_(mr_a, b); return millerRabin(x, mr_a); } //does a single round of Miller-Rabin base b consider x to be a possible prime? //x and b are bigInts with b<x function millerRabin(x, b) { var i, j, k, s; if (mr_x1.length != x.length) { mr_x1 = dup(x); mr_r = dup(x); mr_a = dup(x); } copy_(mr_a, b); copy_(mr_r, x); copy_(mr_x1, x); addInt_(mr_r, -1); addInt_(mr_x1, -1); //s=the highest power of two that divides mr_r k = 0; for (i = 0; i < mr_r.length; i++) for (j = 1; j < mask; j <<= 1) if (x[i] & j) { s = (k < mr_r.length + bpe ? k : 0); i = mr_r.length; j = mask; } else k++; if (s) rightShift_(mr_r, s); powMod_(mr_a, mr_r, x); if (!equalsInt(mr_a, 1) && !equals(mr_a, mr_x1)) { j = 1; while (j <= s - 1 && !equals(mr_a, mr_x1)) { squareMod_(mr_a, x); if (equalsInt(mr_a, 1)) { return 0; } j++; } if (!equals(mr_a, mr_x1)) { return 0; } } return 1; } //returns how many bits long the bigInt is, not counting leading zeros. function bitSize(x) { var j, z, w; for (j = x.length - 1; (x[j] == 0) && (j > 0); j--); for (z = 0, w = x[j]; w; (w >>= 1), z++); z += bpe * j; return z; } //return a copy of x with at least n elements, adding leading zeros if needed function expand(x, n) { var ans = int2bigInt(0, (x.length > n ? x.length : n) * bpe, 0); copy_(ans, x); return ans; } //return a k-bit true random prime using Maurer's algorithm. function randTruePrime(k) { var ans = int2bigInt(0, k, 0); randTruePrime_(ans, k); return trim(ans, 1); } //return a k-bit random probable prime with probability of error < 2^-80 function randProbPrime(k) { if (k >= 600) return randProbPrimeRounds(k, 2); //numbers from HAC table 4.3 if (k >= 550) return randProbPrimeRounds(k, 4); if (k >= 500) return randProbPrimeRounds(k, 5); if (k >= 400) return randProbPrimeRounds(k, 6); if (k >= 350) return randProbPrimeRounds(k, 7); if (k >= 300) return randProbPrimeRounds(k, 9); if (k >= 250) return randProbPrimeRounds(k, 12); //numbers from HAC table 4.4 if (k >= 200) return randProbPrimeRounds(k, 15); if (k >= 150) return randProbPrimeRounds(k, 18); if (k >= 100) return randProbPrimeRounds(k, 27); return randProbPrimeRounds(k, 40); //number from HAC remark 4.26 (only an estimate) } //return a k-bit probable random prime using n rounds of Miller Rabin (after trial division with small primes) function randProbPrimeRounds(k, n) { var ans, i, divisible, B; B = 30000; //B is largest prime to use in trial division ans = int2bigInt(0, k, 0); //optimization: try larger and smaller B to find the best limit. if (primes.length == 0) primes = findPrimes(30000); //check for divisibility by primes <=30000 if (rpprb.length != ans.length) rpprb = dup(ans); for (;;) { //keep trying random values for ans until one appears to be prime //optimization: pick a random number times L=2*3*5*...*p, plus a // random element of the list of all numbers in [0,L) not divisible by any prime up to p. // This can reduce the amount of random number generation. randBigInt_(ans, k, 0); //ans = a random odd number to check ans[0] |= 1; divisible = 0; //check ans for divisibility by small primes up to B for (i = 0; (i < primes.length) && (primes[i] <= B); i++) if (modInt(ans, primes[i]) == 0 && !equalsInt(ans, primes[i])) { divisible = 1; break; } //optimization: change millerRabin so the base can be bigger than the number being checked, then eliminate the while here. //do n rounds of Miller Rabin, with random bases less than ans for (i = 0; i < n && !divisible; i++) { randBigInt_(rpprb, k, 0); while (!greater(ans, rpprb)) //pick a random rpprb that's < ans randBigInt_(rpprb, k, 0); if (!millerRabin(ans, rpprb)) divisible = 1; } if (!divisible) return ans; } } //return a new bigInt equal to (x mod n) for bigInts x and n. function mod(x, n) { var ans = dup(x); mod_(ans, n); return trim(ans, 1); } //return (x+n) where x is a bigInt and n is an integer. function addInt(x, n) { var ans = expand(x, x.length + 1); addInt_(ans, n); return trim(ans, 1); } //return x*y for bigInts x and y. This is faster when y<x. function mult(x, y) { var ans = expand(x, x.length + y.length); mult_(ans, y); return trim(ans, 1); } //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n. function powMod(x, y, n) { var ans = expand(x, n.length); powMod_(ans, trim(y, 2), trim(n, 2), 0); //this should work without the trim, but doesn't return trim(ans, 1); } //return (x-y) for bigInts x and y. Negative answers will be 2s complement function sub(x, y) { var ans = expand(x, (x.length > y.length ? x.length + 1 : y.length + 1)); sub_(ans, y); return trim(ans, 1); } //return (x+y) for bigInts x and y. function add(x, y) { var ans = expand(x, (x.length > y.length ? x.length + 1 : y.length + 1)); add_(ans, y); return trim(ans, 1); } //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null function inverseMod(x, n) { var ans = expand(x, n.length); var s; s = inverseMod_(ans, n); return s ? trim(ans, 1) : null; } //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x. function multMod(x, y, n) { var ans = expand(x, n.length); multMod_(ans, y, n); return trim(ans, 1); } //generate a k-bit true random prime using Maurer's algorithm, //and put it into ans. The bigInt ans must be large enough to hold it. function randTruePrime_(ans, k) { var c, m, pm, dd, j, r, B, divisible, z, zz, recSize, recLimit, w; if (primes.length == 0) primes = findPrimes(30000); //check for divisibility by primes <=30000 if (pows.length == 0) { pows = new Array(512); for (j = 0; j < 512; j++) { pows[j] = Math.pow(2, j / 511. - 1.); } } //c and m should be tuned for a particular machine and value of k, to maximize speed c = 0.1; //c=0.1 in HAC m = 20; //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits recLimit = 20; //stop recursion when k <=recLimit. Must have recLimit >= 2 if (s_i2.length != ans.length) { s_i2 = dup(ans); s_R = dup(ans); s_n1 = dup(ans); s_r2 = dup(ans); s_d = dup(ans); s_x1 = dup(ans); s_x2 = dup(ans); s_b = dup(ans); s_n = dup(ans); s_i = dup(ans); s_rm = dup(ans); s_q = dup(ans); s_a = dup(ans); s_aa = dup(ans); } if (k <= recLimit) { //generate small random primes by trial division up to its square root pm = (1 << ((k + 2) >> 1)) - 1; //pm is binary number with all ones, just over sqrt(2^k) copyInt_(ans, 0); for (dd = 1; dd;) { dd = 0; ans[0] = 1 | (1 << (k - 1)) | Math.floor(Math.random() * (1 << k)); //random, k-bit, odd integer, with msb 1 for (j = 1; (j < primes.length) && ((primes[j] & pm) == primes[j]); j++) { //trial division by all primes 3...sqrt(2^k) if (0 == (ans[0] % primes[j])) { dd = 1; break; } } } carry_(ans); return; } B = c * k * k; //try small primes up to B (or all the primes[] array if the largest is less than B). if (k > 2 * m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits for (r = 1; k - k * r <= m;) r = pows[Math.floor(Math.random() * 512)]; //r=Math.pow(2,Math.random()-1); else r = .5; //simulation suggests the more complex algorithm using r=.333 is only slightly faster. recSize = Math.floor(r * k) + 1; randTruePrime_(s_q, recSize); copyInt_(s_i2, 0); s_i2[Math.floor((k - 2) / bpe)] |= (1 << ((k - 2) % bpe)); //s_i2=2^(k-2) divide_(s_i2, s_q, s_i, s_rm); //s_i=floor((2^(k-1))/(2q)) z = bitSize(s_i); for (;;) { for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1] randBigInt_(s_R, z, 0); if (greater(s_i, s_R)) break; } //now s_R is in the range [0,s_i-1] addInt_(s_R, 1); //now s_R is in the range [1,s_i] add_(s_R, s_i); //now s_R is in the range [s_i+1,2*s_i] copy_(s_n, s_q); mult_(s_n, s_R); multInt_(s_n, 2); addInt_(s_n, 1); //s_n=2*s_R*s_q+1 copy_(s_r2, s_R); multInt_(s_r2, 2); //s_r2=2*s_R //check s_n for divisibility by small primes up to B for (divisible = 0, j = 0; (j < primes.length) && (primes[j] < B); j++) if (modInt(s_n, primes[j]) == 0 && !equalsInt(s_n, primes[j])) { divisible = 1; break; } if (!divisible) //if it passes small primes check, then try a single Miller-Rabin base 2 if (!millerRabinInt(s_n, 2)) //this line represents 75% of the total runtime for randTruePrime_ divisible = 1; if (!divisible) { //if it passes that test, continue checking s_n addInt_(s_n, -3); for (j = s_n.length - 1; (s_n[j] == 0) && (j > 0); j--); //strip leading zeros for (zz = 0, w = s_n[j]; w; (w >>= 1), zz++); zz += bpe * j; //zz=number of bits in s_n, ignoring leading zeros for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1] randBigInt_(s_a, zz, 0); if (greater(s_n, s_a)) break; } //now s_a is in the range [0,s_n-1] addInt_(s_n, 3); //now s_a is in the range [0,s_n-4] addInt_(s_a, 2); //now s_a is in the range [2,s_n-2] copy_(s_b, s_a); copy_(s_n1, s_n); addInt_(s_n1, -1); powMod_(s_b, s_n1, s_n); //s_b=s_a^(s_n-1) modulo s_n addInt_(s_b, -1); if (isZero(s_b)) { copy_(s_b, s_a); powMod_(s_b, s_r2, s_n); addInt_(s_b, -1); copy_(s_aa, s_n); copy_(s_d, s_b); GCD_(s_d, s_n); //if s_b and s_n are relatively prime, then s_n is a prime if (equalsInt(s_d, 1)) { copy_(ans, s_aa); return; //if we've made it this far, then s_n is absolutely guaranteed to be prime } } } } } //Return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1. function randBigInt(n, s) { var a, b; a = Math.floor((n - 1) / bpe) + 2; //# array elements to hold the BigInt with a leading 0 element b = int2bigInt(0, 0, a); randBigInt_(b, n, s); return b; } //Set b to an n-bit random BigInt. If s=1, then the most significant of those n bits is set to 1. //Array b must be big enough to hold the result. Must have n>=1 function randBigInt_(b, n, s) { var i, a; for (i = 0; i < b.length; i++) b[i] = 0; a = Math.floor((n - 1) / bpe) + 1; //# array elements to hold the BigInt for (i = 0; i < a; i++) { b[i] = Math.floor(Math.random() * (1 << (bpe - 1))); } b[a - 1] &= (2 << ((n - 1) % bpe)) - 1; if (s == 1) b[a - 1] |= (1 << ((n - 1) % bpe)); } //Return the greatest common divisor of bigInts x and y (each with same number of elements). function GCD(x, y) { var xc, yc; xc = dup(x); yc = dup(y); GCD_(xc, yc); return xc; } //set x to the greatest common divisor of bigInts x and y (each with same number of elements). //y is destroyed. function GCD_(x, y) { var i, xp, yp, A, B, C, D, q, sing,qp; if (T.length != x.length) T = dup(x); sing = 1; while (sing) { //while y has nonzero elements other than y[0] sing = 0; for (i = 1; i < y.length; i++) //check if y has nonzero elements other than 0 if (y[i]) { sing = 1; break; } if (!sing) break; //quit when y all zero elements except possibly y[0] for (i = x.length; !x[i] && i >= 0; i--); //find most significant element of x xp = x[i]; yp = y[i]; A = 1; B = 0; C = 0; D = 1; while ((yp + C) && (yp + D)) { q = Math.floor((xp + A) / (yp + C)); qp = Math.floor((xp + B) / (yp + D)); if (q != qp) break; t = A - q * C; A = C; C = t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp) t = B - q * D; B = D; D = t; t = xp - q * yp; xp = yp; yp = t; } if (B) { copy_(T, x); linComb_(x, y, A, B); //x=A*x+B*y linComb_(y, T, D, C); //y=D*y+C*T } else { mod_(x, y); copy_(T, x); copy_(x, y); copy_(y, T); } } if (y[0] == 0) return; t = modInt(x, y[0]); copyInt_(x, y[0]); y[0] = t; while (y[0]) { x[0] %= y[0]; t = x[0]; x[0] = y[0]; y[0] = t; } } //do x=x**(-1) mod n, for bigInts x and n. //If no inverse exists, it sets x to zero and returns 0, else it returns 1. //The x array must be at least as large as the n array. function inverseMod_(x, n) { var k = 1 + 2 * Math.max(x.length, n.length); if (!(x[0] & 1) && !(n[0] & 1)) { //if both inputs are even, then inverse doesn't exist copyInt_(x, 0); return 0; } if (eg_u.length != k) { eg_u = new Array(k); eg_v = new Array(k); eg_A = new Array(k); eg_B = new Array(k); eg_C = new Array(k); eg_D = new Array(k); } copy_(eg_u, x); copy_(eg_v, n); copyInt_(eg_A, 1); copyInt_(eg_B, 0); copyInt_(eg_C, 0); copyInt_(eg_D, 1); for (;;) { while (!(eg_u[0] & 1)) { //while eg_u is even halve_(eg_u); if (!(eg_A[0] & 1) && !(eg_B[0] & 1)) { //if eg_A==eg_B==0 mod 2 halve_(eg_A); halve_(eg_B); } else { add_(eg_A, n); halve_(eg_A); sub_(eg_B, x); halve_(eg_B); } } while (!(eg_v[0] & 1)) { //while eg_v is even halve_(eg_v); if (!(eg_C[0] & 1) && !(eg_D[0] & 1)) { //if eg_C==eg_D==0 mod 2 halve_(eg_C); halve_(eg_D); } else { add_(eg_C, n); halve_(eg_C); sub_(eg_D, x); halve_(eg_D); } } if (!greater(eg_v, eg_u)) { //eg_v <= eg_u sub_(eg_u, eg_v); sub_(eg_A, eg_C); sub_(eg_B, eg_D); } else { //eg_v > eg_u sub_(eg_v, eg_u); sub_(eg_C, eg_A); sub_(eg_D, eg_B); } if (equalsInt(eg_u, 0)) { if (negative(eg_C)) //make sure answer is nonnegative add_(eg_C, n); copy_(x, eg_C); if (!equalsInt(eg_v, 1)) { //if GCD_(x,n)!=1, then there is no inverse copyInt_(x, 0); return 0; } return 1; } } } //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse function inverseModInt(x, n) { var a = 1, b = 0, t; for (;;) { if (x == 1) return a; if (x == 0) return 0; b -= a * Math.floor(n / x); n %= x; if (n == 1) return b; //to avoid negatives, change this b to n-b, and each -= to += if (n == 0) return 0; a -= b * Math.floor(x / n); x %= n; } } //this deprecated function is for backward compatibility only. function inverseModInt_(x, n) { return inverseModInt(x, n); } //Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that: // v = GCD_(x,y) = a*x-b*y //The bigInts v, a, b, must have exactly as many elements as the larger of x and y. function eGCD_(x, y, v, a, b) { var g = 0; var k = Math.max(x.length, y.length); if (eg_u.length != k) { eg_u = new Array(k); eg_A = new Array(k); eg_B = new Array(k); eg_C = new Array(k); eg_D = new Array(k); } while (!(x[0] & 1) && !(y[0] & 1)) { //while x and y both even halve_(x); halve_(y); g++; } copy_(eg_u, x); copy_(v, y); copyInt_(eg_A, 1); copyInt_(eg_B, 0); copyInt_(eg_C, 0); copyInt_(eg_D, 1); for (;;) { while (!(eg_u[0] & 1)) { //while u is even halve_(eg_u); if (!(eg_A[0] & 1) && !(eg_B[0] & 1)) { //if A==B==0 mod 2 halve_(eg_A); halve_(eg_B); } else { add_(eg_A, y); halve_(eg_A); sub_(eg_B, x); halve_(eg_B); } } while (!(v[0] & 1)) { //while v is even halve_(v); if (!(eg_C[0] & 1) && !(eg_D[0] & 1)) { //if C==D==0 mod 2 halve_(eg_C); halve_(eg_D); } else { add_(eg_C, y); halve_(eg_C); sub_(eg_D, x); halve_(eg_D); } } if (!greater(v, eg_u)) { //v<=u sub_(eg_u, v); sub_(eg_A, eg_C); sub_(eg_B, eg_D); } else { //v>u sub_(v, eg_u); sub_(eg_C, eg_A); sub_(eg_D, eg_B); } if (equalsInt(eg_u, 0)) { if (negative(eg_C)) { //make sure a (C)is nonnegative add_(eg_C, y); sub_(eg_D, x); } multInt_(eg_D, -1); ///make sure b (D) is nonnegative copy_(a, eg_C); copy_(b, eg_D); leftShift_(v, g); return; } } } //is bigInt x negative? function negative(x) { return ((x[x.length - 1] >> (bpe - 1)) & 1); } //is (x << (shift*bpe)) > y? //x and y are nonnegative bigInts //shift is a nonnegative integer function greaterShift(x, y, shift) { var i, kx = x.length, ky = y.length; var k = ((kx + shift) < ky) ? (kx + shift) : ky; for (i = ky - 1 - shift; i < kx && i >= 0; i++) if (x[i] > 0) return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger for (i = kx - 1 + shift; i < ky; i++) if (y[i] > 0) return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger for (i = k - 1; i >= shift; i--) if (x[i - shift] > y[i]) return 1; else if (x[i - shift] < y[i]) return 0; return 0; } //is x > y? (x and y both nonnegative) function greater(x, y) { var i; var k = (x.length < y.length) ? x.length : y.length; for (i = x.length; i < y.length; i++) if (y[i]) return 0; //y has more digits for (i = y.length; i < x.length; i++) if (x[i]) return 1; //x has more digits for (i = k - 1; i >= 0; i--) if (x[i] > y[i]) return 1; else if (x[i] < y[i]) return 0; return 0; } //divide x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints. //x must have at least one leading zero element. //y must be nonzero. //q and r must be arrays that are exactly the same length as x. (Or q can have more). //Must have x.length >= y.length >= 2. function divide_(x, y, q, r) { var kx, ky; var i, j, y1, y2, c, a, b; copy_(r, x); for (ky = y.length; y[ky - 1] == 0; ky--); //ky is number of elements in y, not including leading zeros //normalize: ensure the most significant element of y has its highest bit set b = y[ky - 1]; for (a = 0; b; a++) b >>= 1; a = bpe - a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element leftShift_(y, a); //multiply both by 1<<a now, then divide both by that at the end leftShift_(r, a); //Rob Visser discovered a bug: the following line was originally just before the normalization. for (kx = r.length; r[kx - 1] == 0 && kx > ky; kx--); //kx is number of elements in normalized x, not including leading zeros copyInt_(q, 0); // q=0 while (!greaterShift(y, r, kx - ky)) { // while (leftShift_(y,kx-ky) <= r) { subShift_(r, y, kx - ky); // r=r-leftShift_(y,kx-ky) q[kx - ky]++; // q[kx-ky]++; } // } for (i = kx - 1; i >= ky; i--) { if (r[i] == y[ky - 1]) q[i - ky] = mask; else q[i - ky] = Math.floor((r[i] * radix + r[i - 1]) / y[ky - 1]); //The following for(;;) loop is equivalent to the commented while loop, //except that the uncommented version avoids overflow. //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0 // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2]) // q[i-ky]--; for (;;) { y2 = (ky > 1 ? y[ky - 2] : 0) * q[i - ky]; c = y2 >> bpe; y2 = y2 & mask; y1 = c + q[i - ky] * y[ky - 1]; c = y1 >> bpe; y1 = y1 & mask; if (c == r[i] ? y1 == r[i - 1] ? y2 > (i > 1 ? r[i - 2] : 0) : y1 > r[i - 1] : c > r[i]) q[i - ky]--; else break; } linCombShift_(r, y, -q[i - ky], i - ky); //r=r-q[i-ky]*leftShift_(y,i-ky) if (negative(r)) { addShift_(r, y, i - ky); //r=r+leftShift_(y,i-ky) q[i - ky]--; } } rightShift_(y, a); //undo the normalization step rightShift_(r, a); //undo the normalization step } //do carries and borrows so each element of the bigInt x fits in bpe bits. function carry_(x) { var i, k, c, b; k = x.length; c = 0; for (i = 0; i < k; i++) { c += x[i]; b = 0; if (c < 0) { b = -(c >> bpe); c += b * radix; } x[i] = c & mask; c = (c >> bpe) - b; } } //return x mod n for bigInt x and integer n. function modInt(x, n) { var i, c = 0; for (i = x.length - 1; i >= 0; i--) c = (c * radix + x[i]) % n; return c; } //convert the integer t into a bigInt with at least the given number of bits. //the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word) //Pad the array with leading zeros so that it has at least minSize elements. //There will always be at least one leading 0 element. function int2bigInt(t, bits, minSize) { var i, k; k = Math.ceil(bits / bpe) + 1; k = minSize > k ? minSize : k; buff = new Array(k); copyInt_(buff, t); return buff; } //return the bigInt given a string representation in a given base. //Pad the array with leading zeros so that it has at least minSize elements. //If base=-1, then it reads in a space-separated list of array elements in decimal. //The array will always have at least one leading zero, unless base=-1. function str2bigInt(s, base, minSize) { var d, i, j, x, y, kk; var k = s.length; if (base == -1) { //comma-separated list of array elements in decimal x = new Array(0); for (;;) { y = new Array(x.length + 1); for (i = 0; i < x.length; i++) y[i + 1] = x[i]; y[0] = parseInt(s, 10); x = y; d = s.indexOf(',', 0); if (d < 1) break; s = s.substring(d + 1); if (s.length == 0) break; } if (x.length < minSize) { y = new Array(minSize); copy_(y, x); return y; } return x; } x = int2bigInt(0, base * k, 0); for (i = 0; i < k; i++) { d = digitsStr.indexOf(s.substring(i, i + 1), 0); if (base <= 36 && d >= 36) //convert lowercase to uppercase if base<=36 d -= 26; if (d >= base || d < 0) { //stop at first illegal character break; } multInt_(x, base); addInt_(x, d); } for (k = x.length; k > 0 && !x[k - 1]; k--); //strip off leading zeros k = minSize > k + 1 ? minSize : k + 1; y = new Array(k); kk = k < x.length ? k : x.length; for (i = 0; i < kk; i++) y[i] = x[i]; for (; i < k; i++) y[i] = 0; return y; } //is bigint x equal to integer y? //y must have less than bpe bits function equalsInt(x, y) { var i; if (x[0] != y) return 0; for (i = 1; i < x.length; i++) if (x[i]) return 0; return 1; } //are bigints x and y equal? //this works even if x and y are different lengths and have arbitrarily many leading zeros function equals(x, y) { var i; var k = x.length < y.length ? x.length : y.length; for (i = 0; i < k; i++) if (x[i] != y[i]) return 0; if (x.length > y.length) { for (; i < x.length; i++) if (x[i]) return 0; } else { for (; i < y.length; i++) if (y[i]) return 0; } return 1; } //is the bigInt x equal to zero? function isZero(x) { var i; for (i = 0; i < x.length; i++) if (x[i]) return 0; return 1; } //convert a bigInt into a string in a given base, from base 2 up to base 95. //Base -1 prints the contents of the array representing the number. function bigInt2str(x, base) { var i, t, s = ""; if (s6.length != x.length) s6 = dup(x); else copy_(s6, x); if (base == -1) { //return the list of array contents for (i = x.length - 1; i > 0; i--) s += x[i] + ','; s += x[0]; } else { //return it in the given base while (!isZero(s6)) { t = divInt_(s6, base); //t=s6 % base; s6=floor(s6/base); s = digitsStr.substring(t, t + 1) + s; } } if (s.length == 0) s = "0"; return s; } //returns a duplicate of bigInt x function dup(x) { var i; buff = new Array(x.length); copy_(buff, x); return buff; } //do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y). function copy_(x, y) { var i; var k = x.length < y.length ? x.length : y.length; for (i = 0; i < k; i++) x[i] = y[i]; for (i = k; i < x.length; i++) x[i] = 0; } //do x=y on bigInt x and integer y. function copyInt_(x, n) { var i, c; for (c = n, i = 0; i < x.length; i++) { x[i] = c & mask; c >>= bpe; } } //do x=x+n where x is a bigInt and n is an integer. //x must be large enough to hold the result. function addInt_(x, n) { var i, k, c, b; x[0] += n; k = x.length; c = 0; for (i = 0; i < k; i++) { c += x[i]; b = 0; if (c < 0) { b = -(c >> bpe); c += b * radix; } x[i] = c & mask; c = (c >> bpe) - b; if (!c) return; //stop carrying as soon as the carry is zero } } //right shift bigInt x by n bits. 0 <= n < bpe. function rightShift_(x, n) { var i; var k = Math.floor(n / bpe); if (k) { for (i = 0; i < x.length - k; i++) //right shift x by k elements x[i] = x[i + k]; for (; i < x.length; i++) x[i] = 0; n %= bpe; } for (i = 0; i < x.length - 1; i++) { x[i] = mask & ((x[i + 1] << (bpe - n)) | (x[i] >> n)); } x[i] >>= n; } //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement function halve_(x) { var i; for (i = 0; i < x.length - 1; i++) { x[i] = mask & ((x[i + 1] << (bpe - 1)) | (x[i] >> 1)); } x[i] = (x[i] >> 1) | (x[i] & (radix >> 1)); //most significant bit stays the same } //left shift bigInt x by n bits. function leftShift_(x, n) { var i; var k = Math.floor(n / bpe); if (k) { for (i = x.length; i >= k; i--) //left shift x by k elements x[i] = x[i - k]; for (; i >= 0; i--) x[i] = 0; n %= bpe; } if (!n) return; for (i = x.length - 1; i > 0; i--) { x[i] = mask & ((x[i] << n) | (x[i - 1] >> (bpe - n))); } x[i] = mask & (x[i] << n); } //do x=x*n where x is a bigInt and n is an integer. //x must be large enough to hold the result. function multInt_(x, n) { var i, k, c, b; if (!n) return; k = x.length; c = 0; for (i = 0; i < k; i++) { c += x[i] * n; b = 0; if (c < 0) { b = -(c >> bpe); c += b * radix; } x[i] = c & mask; c = (c >> bpe) - b; } } //do x=floor(x/n) for bigInt x and integer n, and return the remainder function divInt_(x, n) { var i, r = 0, s; for (i = x.length - 1; i >= 0; i--) { s = r * radix + x[i]; x[i] = Math.floor(s / n); r = s % n; } return r; } //do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b. //x must be large enough to hold the answer. function linComb_(x, y, a, b) { var i, c, k, kk; k = x.length < y.length ? x.length : y.length; kk = x.length; for (c = 0, i = 0; i < k; i++) { c += a * x[i] + b * y[i]; x[i] = c & mask; c >>= bpe; } for (i = k; i < kk; i++) { c += a * x[i]; x[i] = c & mask; c >>= bpe; } } //do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys. //x must be large enough to hold the answer. function linCombShift_(x, y, b, ys) { var i, c, k, kk; k = x.length < ys + y.length ? x.length : ys + y.length; kk = x.length; for (c = 0, i = ys; i < k; i++) { c += x[i] + b * y[i - ys]; x[i] = c & mask; c >>= bpe; } for (i = k; c && i < kk; i++) { c += x[i]; x[i] = c & mask; c >>= bpe; } } //do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. //x must be large enough to hold the answer. function addShift_(x, y, ys) { var i, c, k, kk; k = x.length < ys + y.length ? x.length : ys + y.length; kk = x.length; for (c = 0, i = ys; i < k; i++) { c += x[i] + y[i - ys]; x[i] = c & mask; c >>= bpe; } for (i = k; c && i < kk; i++) { c += x[i]; x[i] = c & mask; c >>= bpe; } } //do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. //x must be large enough to hold the answer. function subShift_(x, y, ys) { var i, c, k, kk; k = x.length < ys + y.length ? x.length : ys + y.length; kk = x.length; for (c = 0, i = ys; i < k; i++) { c += x[i] - y[i - ys]; x[i] = c & mask; c >>= bpe; } for (i = k; c && i < kk; i++) { c += x[i]; x[i] = c & mask; c >>= bpe; } } //do x=x-y for bigInts x and y. //x must be large enough to hold the answer. //negative answers will be 2s complement function sub_(x, y) { var i, c, k, kk; k = x.length < y.length ? x.length : y.length; for (c = 0, i = 0; i < k; i++) { c += x[i] - y[i]; x[i] = c & mask; c >>= bpe; } for (i = k; c && i < x.length; i++) { c += x[i]; x[i] = c & mask; c >>= bpe; } } //do x=x+y for bigInts x and y. //x must be large enough to hold the answer. function add_(x, y) { var i, c, k, kk; k = x.length < y.length ? x.length : y.length; for (c = 0, i = 0; i < k; i++) { c += x[i] + y[i]; x[i] = c & mask; c >>= bpe; } for (i = k; c && i < x.length; i++) { c += x[i]; x[i] = c & mask; c >>= bpe; } } //do x=x*y for bigInts x and y. This is faster when y<x. function mult_(x, y) { var i; if (ss.length != 2 * x.length) ss = new Array(2 * x.length); copyInt_(ss, 0); for (i = 0; i < y.length; i++) if (y[i]) linCombShift_(ss, x, y[i], i); //ss=1*ss+y[i]*(x<<(i*bpe)) copy_(x, ss); } //do x=x mod n for bigInts x and n. function mod_(x, n) { if (s4.length != x.length) s4 = dup(x); else copy_(s4, x); if (s5.length != x.length) s5 = dup(x); divide_(s4, n, s5, x); //x = remainder of s4 / n } //do x=x*y mod n for bigInts x,y,n. //for greater speed, let y<x. function multMod_(x, y, n) { var i; if (s0.length != 2 * x.length) s0 = new Array(2 * x.length); copyInt_(s0, 0); for (i = 0; i < y.length; i++) if (y[i]) linCombShift_(s0, x, y[i], i); //s0=1*s0+y[i]*(x<<(i*bpe)) mod_(s0, n); copy_(x, s0); } //do x=x*x mod n for bigInts x,n. function squareMod_(x, n) { var i, j, d, c, kx, kn, k; for (kx = x.length; kx > 0 && !x[kx - 1]; kx--); //ignore leading zeros in x k = kx > n.length ? 2 * kx : 2 * n.length; //k=# elements in the product, which is twice the elements in the larger of x and n if (s0.length != k) s0 = new Array(k); copyInt_(s0, 0); for (i = 0; i < kx; i++) { c = s0[2 * i] + x[i] * x[i]; s0[2 * i] = c & mask; c >>=