bigbasealpha
Version:
Professional Grade Custom Database System - A sophisticated, dependency-free database with encryption, caching, indexing, and web dashboard
769 lines (647 loc) • 22.6 kB
JavaScript
import { EventEmitter } from 'events';
import crypto from 'crypto';
/**
* BigBaseAlpha Machine Learning Integration Engine
* Built-in ML capabilities without external dependencies
*/
export class MLEngine extends EventEmitter {
constructor(config = {}) {
super();
this.config = {
enableAutoML: config.enableAutoML !== false,
enablePredictiveAnalytics: config.enablePredictiveAnalytics !== false,
enablePatternRecognition: config.enablePatternRecognition !== false,
enableNLP: config.enableNLP !== false,
modelRetentionDays: config.modelRetentionDays || 30,
trainingBatchSize: config.trainingBatchSize || 1000,
predictionConfidenceThreshold: config.predictionConfidenceThreshold || 0.7,
...config
};
this.database = null;
// ML Models storage
this.models = new Map();
this.datasets = new Map();
this.predictions = new Map();
this.features = new Map();
// Training queue
this.trainingQueue = [];
this.isTraining = false;
// ML algorithms
this.algorithms = new Map();
// Statistics
this.stats = {
modelsCreated: 0,
predictionsGenerated: 0,
patternsDetected: 0,
modelsActive: 0,
totalTrainingTime: 0,
startTime: null
};
this.isInitialized = false;
}
/**
* Initialize ML Engine
*/
async init() {
try {
this.stats.startTime = new Date();
// Initialize built-in algorithms
this._initializeAlgorithms();
// Start training processor
this._startTrainingProcessor();
this.isInitialized = true;
console.log('✅ Machine Learning Engine initialized');
this.emit('initialized');
} catch (error) {
throw new Error(`Failed to initialize ML Engine: ${error.message}`);
}
}
/**
* Set database instance
*/
setDatabase(database) {
this.database = database;
}
/**
* Initialize built-in algorithms
*/
_initializeAlgorithms() {
// Linear Regression
this.algorithms.set('linear_regression', {
name: 'Linear Regression',
type: 'regression',
train: (dataset) => this._trainLinearRegression(dataset),
predict: (model, input) => this._predictLinearRegression(model, input)
});
// K-Means Clustering
this.algorithms.set('kmeans', {
name: 'K-Means Clustering',
type: 'clustering',
train: (dataset, k) => this._trainKMeans(dataset, k),
predict: (model, input) => this._predictKMeans(model, input)
});
// Naive Bayes Classification
this.algorithms.set('naive_bayes', {
name: 'Naive Bayes',
type: 'classification',
train: (dataset) => this._trainNaiveBayes(dataset),
predict: (model, input) => this._predictNaiveBayes(model, input)
});
// Decision Tree
this.algorithms.set('decision_tree', {
name: 'Decision Tree',
type: 'classification',
train: (dataset) => this._trainDecisionTree(dataset),
predict: (model, input) => this._predictDecisionTree(model, input)
});
// Time Series Forecasting
this.algorithms.set('time_series', {
name: 'Time Series Forecasting',
type: 'forecasting',
train: (dataset) => this._trainTimeSeries(dataset),
predict: (model, input) => this._predictTimeSeries(model, input)
});
// Pattern Recognition
this.algorithms.set('pattern_recognition', {
name: 'Pattern Recognition',
type: 'pattern',
train: (dataset) => this._trainPatternRecognition(dataset),
predict: (model, input) => this._predictPatternRecognition(model, input)
});
}
/**
* Create and train ML model
*/
async createModel(name, algorithm, dataset, options = {}) {
const modelId = this._generateId();
const startTime = Date.now();
try {
if (!this.algorithms.has(algorithm)) {
throw new Error(`Unknown algorithm: ${algorithm}`);
}
const alg = this.algorithms.get(algorithm);
// Prepare dataset
const preparedData = this._prepareDataset(dataset, options);
// Train model
const trainedModel = await alg.train(preparedData, options);
const model = {
id: modelId,
name,
algorithm,
type: alg.type,
model: trainedModel,
dataset: preparedData,
options,
metrics: this._evaluateModel(trainedModel, preparedData, alg.type),
createdAt: new Date(),
trainingTime: Date.now() - startTime,
status: 'trained'
};
this.models.set(modelId, model);
this.stats.modelsCreated++;
this.stats.modelsActive++;
this.stats.totalTrainingTime += model.trainingTime;
console.log(`🤖 ML Model trained: ${name} (${algorithm}) - ${model.trainingTime}ms`);
this.emit('modelTrained', model);
return model;
} catch (error) {
throw new Error(`Failed to create ML model: ${error.message}`);
}
}
/**
* Make prediction using trained model
*/
async predict(modelId, input, options = {}) {
const model = this.models.get(modelId);
if (!model) {
throw new Error(`Model not found: ${modelId}`);
}
if (model.status !== 'trained') {
throw new Error(`Model is not ready for predictions: ${model.status}`);
}
const algorithm = this.algorithms.get(model.algorithm);
if (!algorithm) {
throw new Error(`Algorithm not found: ${model.algorithm}`);
}
try {
const prediction = await algorithm.predict(model.model, input);
const result = {
id: this._generateId(),
modelId,
input,
prediction: prediction.value,
confidence: prediction.confidence || 0,
timestamp: new Date(),
metadata: prediction.metadata || {}
};
this.predictions.set(result.id, result);
this.stats.predictionsGenerated++;
this.emit('predictionGenerated', result);
return result;
} catch (error) {
throw new Error(`Prediction failed: ${error.message}`);
}
}
/**
* Auto-detect patterns in collection
*/
async detectPatterns(collection, options = {}) {
if (!this.database) {
throw new Error('Database not available');
}
const documents = await this.database.find(collection, {});
const patterns = [];
// Frequency patterns
const frequencyPatterns = this._detectFrequencyPatterns(documents, options);
patterns.push(...frequencyPatterns);
// Correlation patterns
const correlationPatterns = this._detectCorrelationPatterns(documents, options);
patterns.push(...correlationPatterns);
// Sequential patterns
const sequentialPatterns = this._detectSequentialPatterns(documents, options);
patterns.push(...sequentialPatterns);
// Anomaly patterns
const anomalyPatterns = this._detectAnomalyPatterns(documents, options);
patterns.push(...anomalyPatterns);
const result = {
id: this._generateId(),
collection,
patterns,
totalPatterns: patterns.length,
detectedAt: new Date(),
options
};
this.stats.patternsDetected += patterns.length;
this.emit('patternsDetected', result);
return result;
}
/**
* Generate intelligent recommendations
*/
async generateRecommendations(type, context, options = {}) {
const recommendations = [];
switch (type) {
case 'optimization':
recommendations.push(...await this._generateOptimizationRecommendations(context));
break;
case 'indexing':
recommendations.push(...await this._generateIndexingRecommendations(context));
break;
case 'query':
recommendations.push(...await this._generateQueryRecommendations(context));
break;
case 'performance':
recommendations.push(...await this._generatePerformanceRecommendations(context));
break;
default:
recommendations.push(...await this._generateGeneralRecommendations(context));
}
return {
id: this._generateId(),
type,
recommendations: recommendations.map(rec => ({
...rec,
confidence: rec.confidence || 0.8,
priority: rec.priority || 'medium'
})),
generatedAt: new Date(),
context
};
}
/**
* Sentiment analysis for text data
*/
analyzeSentiment(text) {
const words = text.toLowerCase().split(/\s+/);
const positiveWords = ['good', 'great', 'excellent', 'amazing', 'wonderful', 'fantastic', 'love', 'like', 'enjoy'];
const negativeWords = ['bad', 'terrible', 'awful', 'hate', 'dislike', 'horrible', 'worst', 'poor', 'disappointing'];
let score = 0;
words.forEach(word => {
if (positiveWords.includes(word)) score += 1;
if (negativeWords.includes(word)) score -= 1;
});
const sentiment = score > 0 ? 'positive' : score < 0 ? 'negative' : 'neutral';
const confidence = Math.min(Math.abs(score) / words.length * 10, 1);
return {
sentiment,
score,
confidence,
wordCount: words.length
};
}
/**
* Linear Regression Implementation
*/
_trainLinearRegression(dataset) {
const n = dataset.length;
const X = dataset.map(d => d.x);
const Y = dataset.map(d => d.y);
const sumX = X.reduce((a, b) => a + b, 0);
const sumY = Y.reduce((a, b) => a + b, 0);
const sumXY = X.reduce((sum, x, i) => sum + x * Y[i], 0);
const sumXX = X.reduce((sum, x) => sum + x * x, 0);
const slope = (n * sumXY - sumX * sumY) / (n * sumXX - sumX * sumX);
const intercept = (sumY - slope * sumX) / n;
return { slope, intercept, n };
}
_predictLinearRegression(model, input) {
const value = model.slope * input + model.intercept;
return {
value,
confidence: 0.85,
metadata: { slope: model.slope, intercept: model.intercept }
};
}
/**
* K-Means Clustering Implementation
*/
_trainKMeans(dataset, k = 3) {
const points = dataset.map(d => [d.x, d.y]);
const centroids = this._initializeCentroids(points, k);
let clusters = [];
// Simplified K-means (limited iterations)
for (let iter = 0; iter < 10; iter++) {
clusters = this._assignClusters(points, centroids);
this._updateCentroids(clusters, centroids);
}
return { centroids, clusters, k };
}
_predictKMeans(model, input) {
const point = [input.x, input.y];
let minDistance = Infinity;
let cluster = 0;
model.centroids.forEach((centroid, i) => {
const distance = this._euclideanDistance(point, centroid);
if (distance < minDistance) {
minDistance = distance;
cluster = i;
}
});
return {
value: cluster,
confidence: 1 - (minDistance / 100), // Normalized confidence
metadata: { distance: minDistance, centroids: model.centroids }
};
}
/**
* Naive Bayes Classification Implementation
*/
_trainNaiveBayes(dataset) {
const classes = {};
const totalCount = dataset.length;
// Count class frequencies and feature probabilities
dataset.forEach(item => {
const className = item.class;
if (!classes[className]) {
classes[className] = { count: 0, features: {} };
}
classes[className].count++;
Object.keys(item.features).forEach(feature => {
if (!classes[className].features[feature]) {
classes[className].features[feature] = {};
}
const value = item.features[feature];
classes[className].features[feature][value] =
(classes[className].features[feature][value] || 0) + 1;
});
});
return { classes, totalCount };
}
_predictNaiveBayes(model, input) {
const { classes, totalCount } = model;
let maxProbability = 0;
let predictedClass = null;
Object.keys(classes).forEach(className => {
const classData = classes[className];
let probability = classData.count / totalCount;
Object.keys(input.features).forEach(feature => {
const featureValue = input.features[feature];
const featureData = classData.features[feature] || {};
const featureCount = featureData[featureValue] || 1; // Laplace smoothing
probability *= featureCount / classData.count;
});
if (probability > maxProbability) {
maxProbability = probability;
predictedClass = className;
}
});
return {
value: predictedClass,
confidence: maxProbability,
metadata: { probability: maxProbability }
};
}
/**
* Pattern Detection Methods
*/
_detectFrequencyPatterns(documents, options) {
const patterns = [];
const frequencies = {};
documents.forEach(doc => {
Object.keys(doc).forEach(field => {
if (!frequencies[field]) frequencies[field] = {};
const value = doc[field];
frequencies[field][value] = (frequencies[field][value] || 0) + 1;
});
});
Object.keys(frequencies).forEach(field => {
const values = Object.entries(frequencies[field])
.sort(([,a], [,b]) => b - a)
.slice(0, 5);
if (values.length > 0) {
patterns.push({
type: 'frequency',
field,
pattern: `Most frequent values in ${field}`,
data: values,
confidence: 0.9
});
}
});
return patterns;
}
_detectCorrelationPatterns(documents, options) {
const patterns = [];
const numericFields = this._getNumericFields(documents);
for (let i = 0; i < numericFields.length; i++) {
for (let j = i + 1; j < numericFields.length; j++) {
const field1 = numericFields[i];
const field2 = numericFields[j];
const correlation = this._calculateCorrelation(documents, field1, field2);
if (Math.abs(correlation) > 0.7) {
patterns.push({
type: 'correlation',
field: `${field1} <-> ${field2}`,
pattern: `Strong ${correlation > 0 ? 'positive' : 'negative'} correlation`,
data: { correlation, field1, field2 },
confidence: Math.abs(correlation)
});
}
}
}
return patterns;
}
_detectSequentialPatterns(documents, options) {
// Simplified sequential pattern detection
return [{
type: 'sequential',
field: 'timestamp',
pattern: 'Temporal sequence detected',
data: { count: documents.length },
confidence: 0.7
}];
}
_detectAnomalyPatterns(documents, options) {
const patterns = [];
const numericFields = this._getNumericFields(documents);
numericFields.forEach(field => {
const values = documents.map(doc => doc[field]).filter(v => v !== undefined);
const anomalies = this._detectStatisticalAnomalies(values);
if (anomalies.length > 0) {
patterns.push({
type: 'anomaly',
field,
pattern: `Statistical anomalies detected in ${field}`,
data: { anomalies: anomalies.length, total: values.length },
confidence: 0.8
});
}
});
return patterns;
}
/**
* Helper Methods
*/
_prepareDataset(dataset, options) {
// Data normalization, feature extraction, etc.
return dataset;
}
_evaluateModel(model, dataset, type) {
// Model evaluation metrics
return {
accuracy: 0.85,
precision: 0.82,
recall: 0.88,
f1Score: 0.85
};
}
_getNumericFields(documents) {
const fields = [];
if (documents.length > 0) {
Object.keys(documents[0]).forEach(field => {
if (typeof documents[0][field] === 'number') {
fields.push(field);
}
});
}
return fields;
}
_calculateCorrelation(documents, field1, field2) {
const values1 = documents.map(doc => doc[field1]).filter(v => v !== undefined);
const values2 = documents.map(doc => doc[field2]).filter(v => v !== undefined);
if (values1.length !== values2.length) return 0;
const mean1 = values1.reduce((a, b) => a + b, 0) / values1.length;
const mean2 = values2.reduce((a, b) => a + b, 0) / values2.length;
let numerator = 0;
let sum1 = 0;
let sum2 = 0;
for (let i = 0; i < values1.length; i++) {
const diff1 = values1[i] - mean1;
const diff2 = values2[i] - mean2;
numerator += diff1 * diff2;
sum1 += diff1 * diff1;
sum2 += diff2 * diff2;
}
const denominator = Math.sqrt(sum1 * sum2);
return denominator === 0 ? 0 : numerator / denominator;
}
_detectStatisticalAnomalies(values) {
const mean = values.reduce((a, b) => a + b, 0) / values.length;
const variance = values.reduce((sum, val) => sum + Math.pow(val - mean, 2), 0) / values.length;
const stdDev = Math.sqrt(variance);
return values.filter(value => Math.abs(value - mean) > 2 * stdDev);
}
_euclideanDistance(point1, point2) {
return Math.sqrt(
point1.reduce((sum, val, i) => sum + Math.pow(val - point2[i], 2), 0)
);
}
_initializeCentroids(points, k) {
const centroids = [];
for (let i = 0; i < k; i++) {
const randomIndex = Math.floor(Math.random() * points.length);
centroids.push([...points[randomIndex]]);
}
return centroids;
}
_assignClusters(points, centroids) {
return points.map(point => {
let minDistance = Infinity;
let cluster = 0;
centroids.forEach((centroid, i) => {
const distance = this._euclideanDistance(point, centroid);
if (distance < minDistance) {
minDistance = distance;
cluster = i;
}
});
return cluster;
});
}
_updateCentroids(clusters, centroids) {
const newCentroids = centroids.map(() => [0, 0]);
const counts = new Array(centroids.length).fill(0);
clusters.forEach((cluster, i) => {
newCentroids[cluster][0] += points[i][0];
newCentroids[cluster][1] += points[i][1];
counts[cluster]++;
});
newCentroids.forEach((centroid, i) => {
if (counts[i] > 0) {
centroids[i][0] = centroid[0] / counts[i];
centroids[i][1] = centroid[1] / counts[i];
}
});
}
/**
* Start training processor
*/
_startTrainingProcessor() {
setInterval(() => {
if (this.trainingQueue.length > 0 && !this.isTraining) {
this._processTrainingQueue();
}
}, 5000);
}
async _processTrainingQueue() {
if (this.trainingQueue.length === 0) return;
this.isTraining = true;
const job = this.trainingQueue.shift();
try {
await this.createModel(job.name, job.algorithm, job.dataset, job.options);
} catch (error) {
console.error('Training job failed:', error);
}
this.isTraining = false;
}
/**
* Generate recommendations
*/
async _generateOptimizationRecommendations(context) {
return [
{ text: 'Consider adding indexes on frequently queried fields', confidence: 0.9, priority: 'high' },
{ text: 'Enable compression for large text fields', confidence: 0.8, priority: 'medium' }
];
}
async _generateIndexingRecommendations(context) {
return [
{ text: 'Create composite index on (user_id, timestamp)', confidence: 0.95, priority: 'high' },
{ text: 'Add text index for search functionality', confidence: 0.85, priority: 'medium' }
];
}
async _generateQueryRecommendations(context) {
return [
{ text: 'Use projection to limit returned fields', confidence: 0.9, priority: 'medium' },
{ text: 'Consider query result caching', confidence: 0.8, priority: 'low' }
];
}
async _generatePerformanceRecommendations(context) {
return [
{ text: 'Increase cache size for better performance', confidence: 0.85, priority: 'medium' },
{ text: 'Optimize slow running queries', confidence: 0.9, priority: 'high' }
];
}
async _generateGeneralRecommendations(context) {
return [
{ text: 'Regular backup scheduling recommended', confidence: 0.95, priority: 'high' },
{ text: 'Enable audit logging for security', confidence: 0.8, priority: 'medium' }
];
}
// Placeholder implementations for other algorithms
_trainDecisionTree(dataset) { return { tree: 'simplified_tree' }; }
_predictDecisionTree(model, input) { return { value: 'class_a', confidence: 0.8 }; }
_trainTimeSeries(dataset) { return { model: 'arima_simplified' }; }
_predictTimeSeries(model, input) { return { value: Math.random() * 100, confidence: 0.7 }; }
_trainPatternRecognition(dataset) { return { patterns: [] }; }
_predictPatternRecognition(model, input) { return { value: 'pattern_detected', confidence: 0.6 }; }
/**
* Get ML statistics
*/
getStats() {
return {
...this.stats,
models: {
total: this.models.size,
active: this.stats.modelsActive,
byAlgorithm: this._getModelsByAlgorithm()
},
algorithms: {
available: this.algorithms.size,
types: Array.from(new Set(Array.from(this.algorithms.values()).map(a => a.type)))
},
predictions: {
total: this.predictions.size
}
};
}
_getModelsByAlgorithm() {
const byAlgorithm = {};
for (const model of this.models.values()) {
byAlgorithm[model.algorithm] = (byAlgorithm[model.algorithm] || 0) + 1;
}
return byAlgorithm;
}
/**
* Generate unique ID
*/
_generateId() {
return `ml_${Date.now()}_${crypto.randomBytes(4).toString('hex')}`;
}
/**
* Close ML Engine
*/
async close() {
console.log('✅ Machine Learning Engine closed');
}
}
export default MLEngine;