UNPKG

bigbasealpha

Version:

Professional Grade Custom Database System - A sophisticated, dependency-free database with encryption, caching, indexing, and web dashboard

1,697 lines (1,448 loc) 50.3 kB
import { EventEmitter } from 'events'; import crypto from 'crypto'; /** * BigBaseAlpha Advanced Analytics Engine * Comprehensive analytics, business intelligence, and data mining capabilities */ export class AnalyticsEngine extends EventEmitter { constructor(config = {}) { super(); this.config = { enableRealTimeAnalytics: config.enableRealTimeAnalytics !== false, enablePredictiveAnalytics: config.enablePredictiveAnalytics !== false, enableAnomalyDetection: config.enableAnomalyDetection !== false, enableBusinessIntelligence: config.enableBusinessIntelligence !== false, enableDataMining: config.enableDataMining !== false, analyticsRetention: config.analyticsRetention || 30, // days batchProcessingInterval: config.batchProcessingInterval || 3600000, // 1 hour anomalyThreshold: config.anomalyThreshold || 0.95, maxHistorySize: config.maxHistorySize || 10000, ...config }; this.database = null; // Analytics data storage this.metrics = new Map(); this.reports = new Map(); this.insights = new Map(); this.anomalies = new Map(); this.predictions = new Map(); // Business Intelligence components this.kpis = new Map(); this.dashboards = new Map(); this.dataMiningResults = new Map(); this.correlations = new Map(); this.patterns = new Map(); // Analysis processors this.processors = new Map(); this.scheduledAnalytics = new Map(); // Statistical models this.models = new Map(); this.trends = new Map(); // Performance tracking this.stats = { totalAnalytics: 0, reportsGenerated: 0, anomaliesDetected: 0, predictionsGenerated: 0, kpisTracked: 0, dataSetsAnalyzed: 0, insightsGenerated: 0, startTime: null, lastAnalysis: null }; this.isInitialized = false; } /** * Initialize analytics engine */ async init() { try { this.stats.startTime = new Date(); // Initialize built-in processors this._initializeProcessors(); // Start background analytics if (this.config.enableRealTimeAnalytics) { this._startRealTimeAnalytics(); } this._startBatchProcessing(); this.isInitialized = true; console.log('✅ Analytics Engine initialized'); this.emit('initialized'); } catch (error) { throw new Error(`Failed to initialize Analytics Engine: ${error.message}`); } } /** * Set database instance */ setDatabase(database) { this.database = database; // Subscribe to database events for real-time analytics if (this.database && this.config.enableRealTimeAnalytics) { this.database.on('insert', (data) => this._processEvent('insert', data)); this.database.on('update', (data) => this._processEvent('update', data)); this.database.on('delete', (data) => this._processEvent('delete', data)); this.database.on('query', (data) => this._processEvent('query', data)); } } /** * Initialize built-in processors */ _initializeProcessors() { // Collection analytics processor this.processors.set('collection_analytics', { name: 'Collection Analytics', process: (data) => this._processCollectionAnalytics(data), schedule: 'hourly', enabled: true }); // Query performance processor this.processors.set('query_performance', { name: 'Query Performance Analytics', process: (data) => this._processQueryPerformance(data), schedule: 'realtime', enabled: true }); // User behavior processor this.processors.set('user_behavior', { name: 'User Behavior Analytics', process: (data) => this._processUserBehavior(data), schedule: 'daily', enabled: true }); // Storage analytics processor this.processors.set('storage_analytics', { name: 'Storage Analytics', process: (data) => this._processStorageAnalytics(data), schedule: 'hourly', enabled: true }); // Anomaly detection processor this.processors.set('anomaly_detection', { name: 'Anomaly Detection', process: (data) => this._processAnomalyDetection(data), schedule: 'realtime', enabled: this.config.enableAnomalyDetection }); // Predictive analytics processor this.processors.set('predictive_analytics', { name: 'Predictive Analytics', process: (data) => this._processPredictiveAnalytics(data), schedule: 'daily', enabled: this.config.enablePredictiveAnalytics }); } /** * Process real-time event */ _processEvent(eventType, data) { const timestamp = new Date(); const eventId = this._generateId(); const event = { id: eventId, type: eventType, data, timestamp, processed: false }; // Process with real-time processors for (const [processorId, processor] of this.processors) { if (processor.enabled && processor.schedule === 'realtime') { try { processor.process(event); } catch (error) { console.error(`Analytics processor error (${processorId}):`, error); } } } this.stats.totalAnalytics++; this.stats.lastAnalysis = timestamp; } /** * Generate analytics report */ async generateReport(type, options = {}) { const reportId = this._generateId(); const startTime = new Date(); try { let reportData; switch (type) { case 'performance': reportData = await this._generatePerformanceReport(options); break; case 'usage': reportData = await this._generateUsageReport(options); break; case 'growth': reportData = await this._generateGrowthReport(options); break; case 'security': reportData = await this._generateSecurityReport(options); break; case 'custom': reportData = await this._generateCustomReport(options); break; default: throw new Error(`Unknown report type: ${type}`); } const report = { id: reportId, type, data: reportData, options, generatedAt: startTime, duration: Date.now() - startTime, format: options.format || 'json' }; this.reports.set(reportId, report); this.stats.reportsGenerated++; this.emit('reportGenerated', report); return report; } catch (error) { throw new Error(`Failed to generate ${type} report: ${error.message}`); } } /** * Generate performance report */ async _generatePerformanceReport(options = {}) { const timeframe = options.timeframe || '24h'; const collections = options.collections || []; const data = { summary: { totalQueries: await this._getQueryCount(timeframe), averageResponseTime: await this._getAverageResponseTime(timeframe), slowQueries: await this._getSlowQueries(timeframe), errorRate: await this._getErrorRate(timeframe) }, queryPatterns: await this._getQueryPatterns(timeframe), performanceTrends: await this._getPerformanceTrends(timeframe), recommendations: await this._getPerformanceRecommendations() }; return data; } /** * Generate usage report */ async _generateUsageReport(options = {}) { const timeframe = options.timeframe || '30d'; const data = { summary: { totalUsers: await this._getUserCount(timeframe), activeUsers: await this._getActiveUserCount(timeframe), totalSessions: await this._getSessionCount(timeframe), averageSessionDuration: await this._getAverageSessionDuration(timeframe) }, usagePatterns: await this._getUsagePatterns(timeframe), popularFeatures: await this._getPopularFeatures(timeframe), geographicDistribution: await this._getGeographicDistribution(timeframe) }; return data; } /** * Generate growth report */ async _generateGrowthReport(options = {}) { const timeframe = options.timeframe || '90d'; const data = { summary: { userGrowthRate: await this._getUserGrowthRate(timeframe), dataGrowthRate: await this._getDataGrowthRate(timeframe), queryGrowthRate: await this._getQueryGrowthRate(timeframe) }, growthTrends: await this._getGrowthTrends(timeframe), projections: await this._getGrowthProjections(timeframe), milestones: await this._getGrowthMilestones(timeframe) }; return data; } /** * Detect anomalies in data */ async detectAnomalies(collection, field, options = {}) { if (!this.database) { throw new Error('Database not available'); } const documents = await this.database.find(collection, {}); const values = documents.map(doc => doc[field]).filter(val => val !== undefined); const anomalies = this._statisticalAnomalyDetection(values, options); const result = { id: this._generateId(), collection, field, anomalies: anomalies.map((anomaly, index) => ({ index, value: anomaly.value, score: anomaly.score, severity: anomaly.score > this.config.anomalyThreshold ? 'high' : 'medium' })), summary: { totalValues: values.length, anomaliesFound: anomalies.length, anomalyRate: (anomalies.length / values.length) * 100 }, detectedAt: new Date() }; this.anomalies.set(result.id, result); this.stats.anomaliesDetected += anomalies.length; return result; } /** * Generate predictions */ async generatePredictions(type, data, options = {}) { const predictionId = this._generateId(); try { let predictions; switch (type) { case 'linear_trend': predictions = this._linearTrendPrediction(data, options); break; case 'seasonal': predictions = this._seasonalPrediction(data, options); break; case 'growth': predictions = this._growthPrediction(data, options); break; default: throw new Error(`Unknown prediction type: ${type}`); } const result = { id: predictionId, type, predictions, confidence: this._calculateConfidence(predictions, data), generatedAt: new Date(), options }; this.predictions.set(predictionId, result); this.stats.predictionsGenerated++; return result; } catch (error) { throw new Error(`Failed to generate ${type} predictions: ${error.message}`); } } /** * Get insights for collection */ async getInsights(collection, options = {}) { if (!this.database) { throw new Error('Database not available'); } const documents = await this.database.find(collection, {}); const insights = { id: this._generateId(), collection, summary: { totalDocuments: documents.length, fieldAnalysis: this._analyzeFields(documents), dataQuality: this._analyzeDataQuality(documents), patterns: this._findPatterns(documents) }, recommendations: this._generateInsightRecommendations(documents), generatedAt: new Date() }; this.insights.set(insights.id, insights); return insights; } /** * Create custom analytics dashboard */ createDashboard(name, config) { const dashboardId = this._generateId(); const dashboard = { id: dashboardId, name, config, widgets: config.widgets || [], refreshInterval: config.refreshInterval || 60000, createdAt: new Date(), lastUpdated: new Date() }; return dashboard; } /** * Statistical anomaly detection using Z-score */ _statisticalAnomalyDetection(values, options = {}) { const threshold = options.threshold || 2.5; const mean = values.reduce((sum, val) => sum + val, 0) / values.length; const variance = values.reduce((sum, val) => sum + Math.pow(val - mean, 2), 0) / values.length; const stdDev = Math.sqrt(variance); return values .map((value, index) => ({ index, value, score: Math.abs((value - mean) / stdDev) })) .filter(item => item.score > threshold); } /** * Linear trend prediction */ _linearTrendPrediction(data, options = {}) { const periods = options.periods || 10; const n = data.length; // Calculate linear regression const sumX = data.reduce((sum, _, i) => sum + i, 0); const sumY = data.reduce((sum, val) => sum + val, 0); const sumXY = data.reduce((sum, val, i) => sum + i * val, 0); const sumXX = data.reduce((sum, _, i) => sum + i * i, 0); const slope = (n * sumXY - sumX * sumY) / (n * sumXX - sumX * sumX); const intercept = (sumY - slope * sumX) / n; // Generate predictions const predictions = []; for (let i = n; i < n + periods; i++) { predictions.push({ period: i, value: slope * i + intercept, trend: slope > 0 ? 'increasing' : slope < 0 ? 'decreasing' : 'stable' }); } return predictions; } /** * Analyze data fields */ _analyzeFields(documents) { const fieldStats = {}; documents.forEach(doc => { Object.keys(doc).forEach(field => { if (!fieldStats[field]) { fieldStats[field] = { type: typeof doc[field], count: 0, nullCount: 0, uniqueValues: new Set() }; } fieldStats[field].count++; if (doc[field] === null || doc[field] === undefined) { fieldStats[field].nullCount++; } else { fieldStats[field].uniqueValues.add(doc[field]); } }); }); // Convert to analysis format const analysis = {}; Object.keys(fieldStats).forEach(field => { const stats = fieldStats[field]; analysis[field] = { type: stats.type, completeness: ((stats.count - stats.nullCount) / stats.count) * 100, uniqueness: (stats.uniqueValues.size / stats.count) * 100, cardinality: stats.uniqueValues.size }; }); return analysis; } /** * Start real-time analytics processing */ _startRealTimeAnalytics() { // Process metrics every 5 seconds setInterval(() => { this._processRealTimeMetrics(); }, 5000); } /** * Start batch processing */ _startBatchProcessing() { setInterval(() => { this._processBatchAnalytics(); }, this.config.batchProcessingInterval); } /** * Process real-time metrics */ _processRealTimeMetrics() { const timestamp = new Date(); // Example real-time metrics const metrics = { timestamp, activeConnections: Math.floor(Math.random() * 100) + 50, queriesPerSecond: Math.floor(Math.random() * 50) + 10, memoryUsage: Math.floor(Math.random() * 30) + 50, cpuUsage: Math.floor(Math.random() * 40) + 10 }; this.metrics.set(`realtime_${timestamp.getTime()}`, metrics); this.emit('realTimeMetrics', metrics); } /** * Process batch analytics */ async _processBatchAnalytics() { console.log('🔄 Processing batch analytics...'); for (const [processorId, processor] of this.processors) { if (processor.enabled && processor.schedule !== 'realtime') { try { await processor.process(); console.log(`✅ Processed ${processor.name}`); } catch (error) { console.error(`❌ Batch analytics error (${processorId}):`, error); } } } } /** * Get analytics statistics */ getStats() { return { ...this.stats, metrics: { total: this.metrics.size, realTimeProcessors: Array.from(this.processors.values()) .filter(p => p.schedule === 'realtime' && p.enabled).length }, reports: { total: this.reports.size, byType: this._getReportsByType() }, insights: { total: this.insights.size }, anomalies: { total: this.anomalies.size, recent: Array.from(this.anomalies.values()) .filter(a => Date.now() - a.detectedAt < 86400000).length }, predictions: { total: this.predictions.size } }; } /** * Get reports by type */ _getReportsByType() { const byType = {}; for (const report of this.reports.values()) { byType[report.type] = (byType[report.type] || 0) + 1; } return byType; } /** * Generate unique ID */ _generateId() { return `analytics_${Date.now()}_${crypto.randomBytes(4).toString('hex')}`; } /** * Placeholder methods for report generation */ async _getQueryCount(timeframe) { return Math.floor(Math.random() * 10000) + 1000; } async _getAverageResponseTime(timeframe) { return Math.floor(Math.random() * 50) + 10; } async _getSlowQueries(timeframe) { return Math.floor(Math.random() * 20) + 5; } async _getErrorRate(timeframe) { return Math.random() * 5; } async _getQueryPatterns(timeframe) { return []; } async _getPerformanceTrends(timeframe) { return []; } async _getPerformanceRecommendations() { return ['Add indexes', 'Optimize queries']; } async _getUserCount(timeframe) { return Math.floor(Math.random() * 1000) + 100; } async _getActiveUserCount(timeframe) { return Math.floor(Math.random() * 500) + 50; } async _getSessionCount(timeframe) { return Math.floor(Math.random() * 5000) + 500; } async _getAverageSessionDuration(timeframe) { return Math.floor(Math.random() * 1800) + 300; } async _getUsagePatterns(timeframe) { return []; } async _getPopularFeatures(timeframe) { return []; } async _getGeographicDistribution(timeframe) { return []; } async _getUserGrowthRate(timeframe) { return Math.random() * 20 + 5; } async _getDataGrowthRate(timeframe) { return Math.random() * 30 + 10; } async _getQueryGrowthRate(timeframe) { return Math.random() * 25 + 5; } async _getGrowthTrends(timeframe) { return []; } async _getGrowthProjections(timeframe) { return []; } async _getGrowthMilestones(timeframe) { return []; } _analyzeDataQuality(documents) { return { score: 85, issues: [] }; } _findPatterns(documents) { return []; } _generateInsightRecommendations(documents) { return []; } _calculateConfidence(predictions, data) { return Math.random() * 30 + 70; } _seasonalPrediction(data, options) { return []; } _growthPrediction(data, options) { return []; } /** * Process collection analytics */ _processCollectionAnalytics(data) { // Implementation for collection analytics } /** * Process query performance analytics */ _processQueryPerformance(data) { // Implementation for query performance } /** * Process user behavior analytics */ _processUserBehavior(data) { // Implementation for user behavior } /** * Process storage analytics */ _processStorageAnalytics(data) { // Implementation for storage analytics } /** * Process anomaly detection */ _processAnomalyDetection(data) { // Implementation for anomaly detection } /** * Process predictive analytics */ _processPredictiveAnalytics(data) { // Implementation for predictive analytics } /** * Generate custom report */ async _generateCustomReport(options) { return { message: 'Custom report generated', options }; } /** * Generate security report */ async _generateSecurityReport(options) { return { summary: { securityScore: 85, vulnerabilities: 2, lastSecurityScan: new Date() }, recommendations: [ 'Enable encryption at rest', 'Implement stronger authentication' ] }; } // ===== BUSINESS INTELLIGENCE METHODS ===== /** * Create KPI (Key Performance Indicator) */ async createKPI(kpiConfig) { const kpi = { id: kpiConfig.id || this.generateId('kpi'), name: kpiConfig.name, type: kpiConfig.type || 'metric', calculation: kpiConfig.calculation || 'average', target: kpiConfig.target, thresholds: kpiConfig.thresholds || { warning: 0, critical: 0 }, unit: kpiConfig.unit || '', description: kpiConfig.description || '', createdAt: Date.now(), updatedAt: Date.now(), currentValue: null, previousValue: null, trend: 'stable', status: 'unknown', history: [] }; this.kpis.set(kpi.id, kpi); this.stats.kpisTracked++; console.log(`📊 KPI created: ${kpi.name} (${kpi.id})`); this.emit('kpiCreated', kpi); return kpi; } /** * Update KPI value */ async updateKPI(kpiId, value, timestamp = Date.now()) { const kpi = this.kpis.get(kpiId); if (!kpi) { throw new Error(`KPI not found: ${kpiId}`); } kpi.previousValue = kpi.currentValue; kpi.currentValue = value; kpi.updatedAt = timestamp; // Add to history kpi.history.push({ value, timestamp }); // Keep only recent history if (kpi.history.length > this.config.maxHistorySize) { kpi.history = kpi.history.slice(-this.config.maxHistorySize); } // Calculate trend kpi.trend = this.calculateKPITrend(kpi); // Determine status kpi.status = this.determineKPIStatus(kpi); this.emit('kpiUpdated', kpi); // Check thresholds and generate alerts this.checkKPIThresholds(kpi); return kpi; } /** * Calculate KPI trend */ calculateKPITrend(kpi) { if (kpi.previousValue === null || kpi.currentValue === null) { return 'stable'; } const change = ((kpi.currentValue - kpi.previousValue) / kpi.previousValue) * 100; if (Math.abs(change) < 1) return 'stable'; return change > 0 ? 'increasing' : 'decreasing'; } /** * Determine KPI status based on thresholds */ determineKPIStatus(kpi) { if (kpi.currentValue === null) return 'unknown'; const { target, thresholds } = kpi; const value = kpi.currentValue; if (kpi.type === 'performance' || kpi.type === 'time') { // Lower is better for performance metrics if (value <= target) return 'good'; if (value <= thresholds.warning) return 'warning'; return 'critical'; } else { // Higher is better for most other metrics if (value >= target) return 'good'; if (value >= thresholds.warning) return 'warning'; return 'critical'; } } /** * Check KPI thresholds and generate alerts */ checkKPIThresholds(kpi) { if (kpi.status === 'critical' || kpi.status === 'warning') { const insight = { type: 'kpi_threshold_alert', severity: kpi.status, kpiId: kpi.id, kpiName: kpi.name, message: `${kpi.name} has reached ${kpi.status} threshold`, value: kpi.currentValue, target: kpi.target, timestamp: Date.now(), recommendations: this.generateKPIRecommendations(kpi) }; this.addInsight(insight); } } /** * Generate KPI recommendations */ generateKPIRecommendations(kpi) { const recommendations = []; switch (kpi.type) { case 'performance': recommendations.push('Review system performance metrics'); recommendations.push('Optimize slow-running processes'); break; case 'quality': recommendations.push('Implement data validation rules'); recommendations.push('Review data entry processes'); break; case 'engagement': recommendations.push('Analyze user behavior patterns'); recommendations.push('Consider user experience improvements'); break; default: recommendations.push('Review current processes and procedures'); recommendations.push('Consider process optimization'); } return recommendations; } /** * Create business dashboard */ async createDashboard(dashboardConfig) { const dashboard = { id: dashboardConfig.id || this.generateId('dashboard'), name: dashboardConfig.name, description: dashboardConfig.description || '', widgets: dashboardConfig.widgets || [], layout: dashboardConfig.layout || 'grid', refreshRate: dashboardConfig.refreshRate || 30000, // 30 seconds createdAt: Date.now(), updatedAt: Date.now(), views: 0, lastViewed: null, isPublic: dashboardConfig.isPublic || false }; this.dashboards.set(dashboard.id, dashboard); console.log(`📈 Dashboard created: ${dashboard.name} (${dashboard.id})`); this.emit('dashboardCreated', dashboard); return dashboard; } /** * Perform data mining analysis */ async performDataMining(collection, options = {}) { const startTime = Date.now(); console.log(`⛏️ Starting data mining analysis on collection: ${collection}...`); const analysis = { id: this.generateId('mining'), collection, startTime, status: 'running', patterns: [], anomalies: [], correlations: [], insights: [], statistics: {} }; try { // Get data from collection const data = await this.database.query(collection, {}); if (!data || data.length === 0) { throw new Error('No data found for analysis'); } // Pattern detection analysis.patterns = await this.detectPatterns(data, options); // Anomaly detection analysis.anomalies = await this.detectDataAnomalies(data, options); // Correlation analysis analysis.correlations = await this.analyzeCorrelations(data, options); // Generate statistics analysis.statistics = this.generateDataStatistics(data); // Generate insights analysis.insights = this.generateMiningInsights(analysis); analysis.status = 'completed'; analysis.completedAt = Date.now(); analysis.executionTime = analysis.completedAt - startTime; this.dataMiningResults.set(analysis.id, analysis); this.stats.dataSetsAnalyzed++; console.log(`✅ Data mining completed: ${analysis.patterns.length} patterns, ${analysis.anomalies.length} anomalies found`); this.emit('dataMiningCompleted', analysis); return analysis; } catch (error) { analysis.status = 'failed'; analysis.error = error.message; analysis.failedAt = Date.now(); console.error('❌ Data mining failed:', error); this.emit('dataMiningFailed', analysis); throw error; } } /** * Detect patterns in data */ async detectPatterns(data, options) { const patterns = []; if (!Array.isArray(data) || data.length === 0) { return patterns; } // Frequency patterns const frequencyPatterns = this.detectFrequencyPatterns(data); patterns.push(...frequencyPatterns); // Sequence patterns const sequencePatterns = this.detectSequencePatterns(data); patterns.push(...sequencePatterns); // Temporal patterns const temporalPatterns = this.detectTemporalPatterns(data); patterns.push(...temporalPatterns); return patterns; } /** * Detect frequency patterns */ detectFrequencyPatterns(data) { const frequencies = {}; const patterns = []; // Count frequencies data.forEach(item => { const key = JSON.stringify(item); frequencies[key] = (frequencies[key] || 0) + 1; }); // Find high-frequency patterns const sortedFreqs = Object.entries(frequencies) .sort(([, a], [, b]) => b - a) .slice(0, 10); // Top 10 sortedFreqs.forEach(([pattern, frequency], index) => { if (frequency > 1) { patterns.push({ type: 'frequency', pattern: JSON.parse(pattern), frequency, rank: index + 1, confidence: (frequency / data.length) * 100 }); } }); return patterns; } /** * Detect sequence patterns */ detectSequencePatterns(data) { const patterns = []; // Simple sequence detection (consecutive patterns) for (let i = 0; i < data.length - 2; i++) { const sequence = data.slice(i, i + 3); // Check if this sequence appears elsewhere let count = 0; for (let j = 0; j < data.length - 2; j++) { const compareSequence = data.slice(j, j + 3); if (JSON.stringify(sequence) === JSON.stringify(compareSequence)) { count++; } } if (count > 1) { patterns.push({ type: 'sequence', pattern: sequence, frequency: count, confidence: (count / (data.length - 2)) * 100 }); } } return patterns; } /** * Detect temporal patterns */ detectTemporalPatterns(data) { const patterns = []; // Look for timestamp-based patterns const timestampData = data.filter(item => item.timestamp || item.createdAt || item.date ); if (timestampData.length > 0) { // Group by hour of day const hourlyDistribution = {}; timestampData.forEach(item => { const timestamp = item.timestamp || item.createdAt || item.date; const hour = new Date(timestamp).getHours(); hourlyDistribution[hour] = (hourlyDistribution[hour] || 0) + 1; }); // Find peak hours const peakHour = Object.entries(hourlyDistribution) .reduce(([maxHour, maxCount], [hour, count]) => count > maxCount ? [hour, count] : [maxHour, maxCount] , ['0', 0]); if (peakHour[1] > 0) { patterns.push({ type: 'temporal', pattern: 'peak_hour', hour: parseInt(peakHour[0]), frequency: peakHour[1], confidence: (peakHour[1] / timestampData.length) * 100 }); } } return patterns; } /** * Detect data anomalies */ async detectDataAnomalies(data, options) { const anomalies = []; if (!Array.isArray(data) || data.length === 0) { return anomalies; } // Statistical anomalies const statisticalAnomalies = this.detectStatisticalAnomalies(data); anomalies.push(...statisticalAnomalies); // Pattern-based anomalies const patternAnomalies = this.detectPatternAnomalies(data); anomalies.push(...patternAnomalies); return anomalies; } /** * Detect statistical anomalies */ detectStatisticalAnomalies(data) { const anomalies = []; // Find numerical fields const numericalFields = this.identifyNumericalFields(data); numericalFields.forEach(field => { const values = data.map(item => item[field]).filter(val => typeof val === 'number'); if (values.length > 0) { const mean = values.reduce((sum, val) => sum + val, 0) / values.length; const stdDev = Math.sqrt( values.reduce((sum, val) => sum + Math.pow(val - mean, 2), 0) / values.length ); // Z-score based anomaly detection values.forEach((value, index) => { const zScore = Math.abs((value - mean) / stdDev); if (zScore > 2.5) { // 2.5 standard deviations anomalies.push({ type: 'statistical', field, value, zScore, index, severity: zScore > 3 ? 'high' : 'medium' }); } }); } }); return anomalies; } /** * Detect pattern-based anomalies */ detectPatternAnomalies(data) { const anomalies = []; // Check for unusual patterns compared to normal behavior if (data.length > 10) { const recentData = data.slice(-10); // Last 10 records const historicalData = data.slice(0, -10); // Compare recent patterns with historical const recentPatterns = this.extractSimplePatterns(recentData); const historicalPatterns = this.extractSimplePatterns(historicalData); recentPatterns.forEach(pattern => { const historicalMatch = historicalPatterns.find(hp => JSON.stringify(hp.pattern) === JSON.stringify(pattern.pattern) ); if (!historicalMatch) { anomalies.push({ type: 'pattern', pattern: pattern.pattern, description: 'New pattern not seen in historical data', severity: 'medium' }); } }); } return anomalies; } /** * Extract simple patterns from data */ extractSimplePatterns(data) { const patterns = []; // Extract field value patterns if (data.length > 0) { const fields = Object.keys(data[0]); fields.forEach(field => { const uniqueValues = [...new Set(data.map(item => item[field]))]; if (uniqueValues.length < data.length * 0.8) { // Not too diverse patterns.push({ field, pattern: uniqueValues, frequency: data.length }); } }); } return patterns; } /** * Analyze correlations in data */ async analyzeCorrelations(data, options) { const correlations = []; if (!Array.isArray(data) || data.length < 2) { return correlations; } const numericalFields = this.identifyNumericalFields(data); // Calculate correlations between numerical fields for (let i = 0; i < numericalFields.length; i++) { for (let j = i + 1; j < numericalFields.length; j++) { const field1 = numericalFields[i]; const field2 = numericalFields[j]; const correlation = this.calculateCorrelation(data, field1, field2); if (Math.abs(correlation) > 0.3) { // Significant correlation correlations.push({ field1, field2, correlation, strength: this.getCorrelationStrength(correlation), direction: correlation > 0 ? 'positive' : 'negative' }); } } } return correlations.sort((a, b) => Math.abs(b.correlation) - Math.abs(a.correlation)); } /** * Calculate correlation coefficient */ calculateCorrelation(data, field1, field2) { const values1 = data.map(item => item[field1]).filter(val => typeof val === 'number'); const values2 = data.map(item => item[field2]).filter(val => typeof val === 'number'); if (values1.length !== values2.length || values1.length === 0) { return 0; } const mean1 = values1.reduce((sum, val) => sum + val, 0) / values1.length; const mean2 = values2.reduce((sum, val) => sum + val, 0) / values2.length; let numerator = 0; let sumSq1 = 0; let sumSq2 = 0; for (let i = 0; i < values1.length; i++) { const diff1 = values1[i] - mean1; const diff2 = values2[i] - mean2; numerator += diff1 * diff2; sumSq1 += diff1 * diff1; sumSq2 += diff2 * diff2; } const denominator = Math.sqrt(sumSq1 * sumSq2); return denominator === 0 ? 0 : numerator / denominator; } /** * Get correlation strength description */ getCorrelationStrength(correlation) { const abs = Math.abs(correlation); if (abs >= 0.8) return 'very strong'; if (abs >= 0.6) return 'strong'; if (abs >= 0.4) return 'moderate'; if (abs >= 0.2) return 'weak'; return 'very weak'; } /** * Identify numerical fields in data */ identifyNumericalFields(data) { if (data.length === 0) return []; const fields = Object.keys(data[0]); return fields.filter(field => { const sampleValues = data.slice(0, Math.min(100, data.length)) .map(item => item[field]) .filter(val => val !== null && val !== undefined); const numericalCount = sampleValues.filter(val => typeof val === 'number').length; return numericalCount > sampleValues.length * 0.8; // 80% numerical }); } /** * Generate data statistics */ generateDataStatistics(data) { const stats = { totalRecords: data.length, fields: {}, summary: {} }; if (data.length === 0) return stats; const fields = Object.keys(data[0]); fields.forEach(field => { const values = data.map(item => item[field]).filter(val => val !== null && val !== undefined); const numericalValues = values.filter(val => typeof val === 'number'); stats.fields[field] = { totalValues: values.length, nullValues: data.length - values.length, uniqueValues: new Set(values).size, dataType: this.inferDataType(values), statistics: numericalValues.length > 0 ? { min: Math.min(...numericalValues), max: Math.max(...numericalValues), mean: numericalValues.reduce((sum, val) => sum + val, 0) / numericalValues.length, median: this.calculateMedian(numericalValues) } : null }; }); return stats; } /** * Infer data type */ inferDataType(values) { if (values.length === 0) return 'unknown'; const types = values.map(val => typeof val); const typeCounts = types.reduce((acc, type) => { acc[type] = (acc[type] || 0) + 1; return acc; }, {}); return Object.entries(typeCounts) .sort(([, a], [, b]) => b - a)[0][0]; } /** * Calculate median */ calculateMedian(values) { const sorted = [...values].sort((a, b) => a - b); const mid = Math.floor(sorted.length / 2); return sorted.length % 2 !== 0 ? sorted[mid] : (sorted[mid - 1] + sorted[mid]) / 2; } /** * Generate mining insights */ generateMiningInsights(analysis) { const insights = []; // Pattern insights if (analysis.patterns.length > 0) { const topPattern = analysis.patterns.reduce((top, pattern) => pattern.confidence > top.confidence ? pattern : top ); insights.push({ type: 'pattern_discovery', message: `Discovered ${analysis.patterns.length} patterns, with highest confidence: ${topPattern.confidence.toFixed(1)}%`, impact: 'medium', actionable: true }); } // Anomaly insights if (analysis.anomalies.length > 0) { const highSeverityAnomalies = analysis.anomalies.filter(a => a.severity === 'high'); insights.push({ type: 'anomaly_detection', message: `Found ${analysis.anomalies.length} anomalies (${highSeverityAnomalies.length} high severity)`, impact: 'high', actionable: true }); } // Correlation insights if (analysis.correlations.length > 0) { const strongCorrelations = analysis.correlations.filter(c => Math.abs(c.correlation) > 0.7 ); insights.push({ type: 'correlation_analysis', message: `Identified ${analysis.correlations.length} correlations (${strongCorrelations.length} strong)`, impact: 'medium', actionable: true }); } return insights; } /** * Add insight to the system */ addInsight(insight) { insight.id = this.generateId('insight'); insight.timestamp = insight.timestamp || Date.now(); this.insights.set(insight.id, insight); this.stats.insightsGenerated++; this.emit('insightGenerated', insight); console.log(`💡 Insight generated: ${insight.message}`); } /** * Generate business intelligence report */ async generateBIReport(reportConfig) { const startTime = Date.now(); console.log(`📋 Generating BI report: ${reportConfig.name}...`); const report = { id: reportConfig.id || this.generateId('bi_report'), name: reportConfig.name, type: reportConfig.type || 'comprehensive', parameters: reportConfig.parameters || {}, createdAt: startTime, status: 'generating', sections: {}, insights: [], recommendations: [] }; try { // Generate different sections based on report type switch (report.type) { case 'executive': report.sections = await this.generateExecutiveReport(report.parameters); break; case 'operational': report.sections = await this.generateOperationalReport(report.parameters); break; case 'financial': report.sections = await this.generateFinancialReport(report.parameters); break; case 'comprehensive': default: report.sections = await this.generateComprehensiveReport(report.parameters); } // Generate insights and recommendations report.insights = this.generateReportInsights(report); report.recommendations = this.generateReportRecommendations(report); report.status = 'completed'; report.completedAt = Date.now(); report.executionTime = report.completedAt - startTime; this.reports.set(report.id, report); this.stats.reportsGenerated++; console.log(`✅ BI report generated: ${report.name} (${report.executionTime}ms)`); this.emit('biReportGenerated', report); return report; } catch (error) { report.status = 'failed'; report.error = error.message; report.failedAt = Date.now(); console.error(`❌ BI report generation failed: ${report.name}`, error); this.emit('biReportFailed', report); throw error; } } /** * Generate executive report */ async generateExecutiveReport(parameters) { return { summary: { title: 'Executive Summary', kpis: this.getKPISummary(), trends: this.getTrendSummary(), alerts: this.getActiveAlerts() }, performance: { title: 'Performance Overview', metrics: await this.getPerformanceMetrics(), comparisons: this.getPerformanceComparisons() }, growth: { title: 'Growth Analysis', metrics: this.getGrowthMetrics(), projections: this.getGrowthProjections() } }; } /** * Generate operational report */ async generateOperationalReport(parameters) { return { system: { title: 'System Health', metrics: await this.getSystemMetrics(), alerts: this.getSystemAlerts(), resources: this.getResourceUtilization() }, performance: { title: 'Performance Metrics', queryPerformance: this.getQueryPerformance(), throughput: this.getThroughputMetrics(), errors: this.getErrorMetrics() }, usage: { title: 'Usage Analytics', patterns: this.getUsagePatterns(), peaks: this.getUsagePeaks(), trends: this.getUsageTrends() } }; } /** * Generate financial report */ async generateFinancialReport(parameters) { return { revenue: { title: 'Revenue Analysis', current: this.getCurrentRevenue(), trends: this.getRevenueTrends(), projections: this.getRevenueProjections() }, costs: { title: 'Cost Analysis', breakdown: this.getCostBreakdown(), trends: this.getCostTrends(), optimization: this.getCostOptimization() }, profitability: { title: 'Profitability Metrics', margins: this.getProfitMargins(), roi: this.getROIMetrics(), efficiency: this.getEfficiencyMetrics() } }; } /** * Generate comprehensive report */ async generateComprehensiveReport(parameters) { const executive = await this.generateExecutiveReport(parameters); const operational = await this.generateOperationalReport(parameters); const financial = await this.generateFinancialReport(parameters); return { ...executive, ...operational, ...financial, analytics: { title: 'Analytics Summary', dataMining: this.getDataMiningResults(), predictions: this.getPredictionResults(), correlations: this.getCorrelationResults() } }; } /** * Helper methods for report generation */ getKPISummary() { const kpis = Array.from(this.kpis.values()); return { total: kpis.length, good: kpis.filter(kpi => kpi.status === 'good').length, warning: kpis.filter(kpi => kpi.status === 'warning').length, critical: kpis.filter(kpi => kpi.status === 'critical').length, topKPIs: kpis.slice(0, 5) }; } getTrendSummary() { // Mock trend data return { overall: 'positive', performance: 'stable', growth: 'increasing', satisfaction: 'improving' }; } getActiveAlerts() { const recentInsights = Array.from(this.insights.values()) .filter(insight => Date.now() - insight.timestamp < 86400000) // Last 24 hours .filter(insight => insight.severity === 'critical' || insight.severity === 'warning'); return recentInsights.slice(0, 10); } async getPerformanceMetrics() { // Mock performance data return { averageResponseTime: 85.3, throughput: 1540, errorRate: 0.3, availability: 99.8 }; } getPerformanceComparisons() { return { previousPeriod: { responseTime: { current: 85.3, previous: 92.1, change: -7.4 }, throughput: { current: 1540, previous: 1420, change: 8.5 }, errorRate: { current: 0.3, previous: 0.5, change: -40.0 } } }; } /** * Get analytics summary for API */ getAnalyticsSummary() { return { kpis: { total: this.kpis.size, critical: Array.from(this.kpis.values()).filter(kpi => kpi.status === 'critical').length, warning: Array.from(this.kpis.values()).filter(kpi => kpi.status === 'warning').length }, reports: { total: this.reports.size, completed: Array.from(this.reports.values()).filter(r => r.status === 'completed').length, failed: Array.from(this.reports.values()).filter(r => r.status === 'failed').length }, insights: { total: this.insights.size, recent: Array.from(this.insights.values()).filter(i => Date.now() - i.timestamp < 86400000).length }, dataMining: { total: this.dataMiningResults.size, patterns: Array.from(this.dataMiningResults.values()).reduce((sum, result) => sum + result.patterns.length, 0), anomalies: Array.from(this.dataMiningResults.values()).reduce((sum, result) => sum + result.anomalies.length, 0) }, statistics: this.stats }; } // Mock data methods (to be replaced with real implementations) getGrowthMetrics() { return { userGrowth: 15.3, revenueGrowth: 8.9, dataGrowth: 22.1 }; } getGrowthProjections() { return { next30Days: 12.5, next90Days: 35.2 }; } getSystemMetrics() { return { cpu: 65.4, memory: 78.2, disk: 45.1 }; } getSystemAlerts() { return []; } getResourceUtilization() { return { peak: 85.3, average: 67.2 }; } getQueryPerformance() { return { average: 85.3, p95: 150.2, p99: 280.5 }; } getThroughputMetrics() { return { qps: 1540, peak: 2340 }; } getErrorMetrics() { return { rate: 0.3, total: 45 }; } getUsagePatterns() { return []; } getUsagePeaks() { return []; } getUsageTrends() { return []; } getCurrentRevenue() { return { monthly: 125000, annual: 1500000 }; } getRevenueTrends() { return { growth: 8.9, trend: 'increasing' }; } getRevenueProjections() { return { nextMonth: 135000, nextQuarter: 420000 }; } getCostBreakdown() { return { infrastructure: 45000, personnel: 85000, other: 15000 }; } getCostTrends() { return { infrastructure: 5.2, personnel: 3.1 }; } getCostOptimization() { return { potential: 12000, recommendations: [] }; } getProfitMargins() { return { gross: 78.5, net: 23.4 }; } getROIMetrics() { return { current: 156.7, target: 180.0 }; } getEfficiencyMetrics() { return { operational: 87.3, financial: 92.1 }; } getDataMiningResults() { return Array.from(this.dataMiningResults.values()).slice(0, 5); } getPredictionResults() {