UNPKG

behemoth-cli

Version:

šŸŒ BEHEMOTH CLIv3.760.4 - Level 50+ POST-SINGULARITY Intelligence Trading AI

391 lines (352 loc) • 13.4 kB
#!/usr/bin/env node /** * BEHEMOTH Reflect MCP Server * Performance analysis and trading strategy reflection system */ import { Server } from '@modelcontextprotocol/sdk/server/index.js'; import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js'; import { CallToolRequestSchema, ListToolsRequestSchema, } from '@modelcontextprotocol/sdk/types.js'; import fs from 'fs/promises'; import path from 'path'; class BehemothReflectServer { constructor() { this.server = new Server( { name: 'behemoth-reflect', version: '1.0.0', }, { capabilities: { tools: {}, }, } ); this.reflectionsFile = path.join(process.cwd(), 'behemoth-reflections.json'); this.setupToolHandlers(); } setupToolHandlers() { this.server.setRequestHandler(ListToolsRequestSchema, async () => ({ tools: [ { name: 'mcp__behemoth_reflect__analyze_performance', description: 'Analyze trading performance and generate insights', inputSchema: { type: 'object', properties: { trades: { type: 'array', description: 'Array of trade data for analysis', }, timeframe: { type: 'string', description: 'Time period for analysis (day, week, month)', default: 'week', }, }, required: ['trades'], }, }, { name: 'mcp__behemoth_reflect__strategy_review', description: 'Review and analyze trading strategy effectiveness', inputSchema: { type: 'object', properties: { strategy_name: { type: 'string', description: 'Name of the trading strategy to review', }, performance_data: { type: 'object', description: 'Performance metrics and trade outcomes', }, market_conditions: { type: 'string', description: 'Market conditions during strategy execution', }, }, required: ['strategy_name'], }, }, { name: 'mcp__behemoth_reflect__cosmic_accuracy_review', description: 'Analyze accuracy of cosmic intelligence predictions', inputSchema: { type: 'object', properties: { predictions: { type: 'array', description: 'Array of cosmic predictions to analyze', }, actual_outcomes: { type: 'array', description: 'Actual market outcomes for comparison', }, }, required: ['predictions', 'actual_outcomes'], }, }, { name: 'mcp__behemoth_reflect__generate_improvement_plan', description: 'Generate actionable improvement plan based on performance analysis', inputSchema: { type: 'object', properties: { analysis_results: { type: 'object', description: 'Results from performance analysis', }, focus_areas: { type: 'array', items: { type: 'string' }, description: 'Specific areas to focus improvement on', }, }, required: ['analysis_results'], }, }, ], })); this.server.setRequestHandler(CallToolRequestSchema, async (request) => { const { name, arguments: args } = request.params; try { switch (name) { case 'mcp__behemoth_reflect__analyze_performance': return await this.analyzePerformance(args.trades, args.timeframe); case 'mcp__behemoth_reflect__strategy_review': return await this.strategyReview(args.strategy_name, args.performance_data, args.market_conditions); case 'mcp__behemoth_reflect__cosmic_accuracy_review': return await this.cosmicAccuracyReview(args.predictions, args.actual_outcomes); case 'mcp__behemoth_reflect__generate_improvement_plan': return await this.generateImprovementPlan(args.analysis_results, args.focus_areas); default: throw new Error(`Unknown tool: ${name}`); } } catch (error) { return { content: [ { type: 'text', text: `Error: ${error.message}`, }, ], }; } }); } async loadReflections() { try { const data = await fs.readFile(this.reflectionsFile, 'utf8'); return JSON.parse(data); } catch (error) { return { reflections: [], created_at: new Date().toISOString() }; } } async saveReflections(reflections) { await fs.writeFile(this.reflectionsFile, JSON.stringify(reflections, null, 2)); } async analyzePerformance(trades, timeframe = 'week') { if (!trades || trades.length === 0) { return { content: [ { type: 'text', text: 'āš ļø No trade data provided for performance analysis.', }, ], }; } // Calculate basic performance metrics const totalTrades = trades.length; const winningTrades = trades.filter(t => t.pnl > 0).length; const losingTrades = trades.filter(t => t.pnl < 0).length; const winRate = (winningTrades / totalTrades * 100).toFixed(2); const totalPnL = trades.reduce((sum, t) => sum + (t.pnl || 0), 0); const avgWin = trades.filter(t => t.pnl > 0).reduce((sum, t, _, arr) => sum + t.pnl / arr.length, 0); const avgLoss = trades.filter(t => t.pnl < 0).reduce((sum, t, _, arr) => sum + Math.abs(t.pnl) / arr.length, 0); const profitFactor = avgWin / (avgLoss || 1); const analysis = { period: timeframe, total_trades: totalTrades, winning_trades: winningTrades, losing_trades: losingTrades, win_rate: winRate, total_pnl: totalPnL.toFixed(2), profit_factor: profitFactor.toFixed(2), avg_win: avgWin.toFixed(2), avg_loss: avgLoss.toFixed(2), analyzed_at: new Date().toISOString() }; // Store reflection const reflections = await this.loadReflections(); reflections.reflections.push({ type: 'performance_analysis', data: analysis, timestamp: new Date().toISOString() }); await this.saveReflections(reflections); return { content: [ { type: 'text', text: `šŸ“Š **BEHEMOTH Performance Analysis** (${timeframe})\n\n` + `šŸŽÆ **Win Rate**: ${winRate}% (${winningTrades}/${totalTrades} trades)\n` + `šŸ’° **Total P&L**: $${totalPnL.toFixed(2)}\n` + `šŸ“ˆ **Profit Factor**: ${profitFactor.toFixed(2)}\n` + `🟢 **Average Win**: $${avgWin.toFixed(2)}\n` + `šŸ”“ **Average Loss**: $${avgLoss.toFixed(2)}\n\n` + `**Key Insights:**\n` + `${winRate > 50 ? 'āœ…' : 'āš ļø'} Win rate is ${winRate > 50 ? 'above' : 'below'} 50%\n` + `${profitFactor > 1 ? 'āœ…' : 'āš ļø'} Profit factor is ${profitFactor > 1 ? 'positive' : 'negative'}\n` + `${totalPnL > 0 ? 'āœ…' : 'āš ļø'} Overall ${totalPnL > 0 ? 'profitable' : 'unprofitable'} period`, }, ], }; } async strategyReview(strategyName, performanceData = {}, marketConditions = '') { const review = { strategy: strategyName, market_conditions: marketConditions, performance: performanceData, reviewed_at: new Date().toISOString() }; // Generate strategy insights let insights = `šŸ” **Strategy Review: ${strategyName}**\n\n`; if (marketConditions) { insights += `🌊 **Market Conditions**: ${marketConditions}\n\n`; } insights += `šŸ“‹ **Performance Summary**:\n`; if (performanceData.winRate) { insights += `• Win Rate: ${performanceData.winRate}%\n`; } if (performanceData.totalReturn) { insights += `• Total Return: ${performanceData.totalReturn}%\n`; } if (performanceData.maxDrawdown) { insights += `• Max Drawdown: ${performanceData.maxDrawdown}%\n`; } insights += `\nšŸŽÆ **Strategy Effectiveness**:\n`; insights += `• Strategy shows ${performanceData.winRate > 50 ? 'positive' : 'challenging'} win rate\n`; insights += `• ${performanceData.totalReturn > 0 ? 'Profitable' : 'Needs optimization'} in current market conditions\n`; insights += `• Drawdown ${performanceData.maxDrawdown < 10 ? 'well controlled' : 'requires attention'}\n`; // Store reflection const reflections = await this.loadReflections(); reflections.reflections.push({ type: 'strategy_review', data: review, timestamp: new Date().toISOString() }); await this.saveReflections(reflections); return { content: [ { type: 'text', text: insights, }, ], }; } async cosmicAccuracyReview(predictions, actualOutcomes) { if (!predictions || !actualOutcomes || predictions.length !== actualOutcomes.length) { return { content: [ { type: 'text', text: 'āš ļø Invalid prediction data provided for cosmic accuracy review.', }, ], }; } let correctPredictions = 0; const totalPredictions = predictions.length; for (let i = 0; i < predictions.length; i++) { const prediction = predictions[i]; const outcome = actualOutcomes[i]; // Simple accuracy check - can be enhanced based on prediction format if (prediction.direction === outcome.direction) { correctPredictions++; } } const accuracy = (correctPredictions / totalPredictions * 100).toFixed(2); const cosmicReview = { total_predictions: totalPredictions, correct_predictions: correctPredictions, accuracy_percentage: accuracy, reviewed_at: new Date().toISOString() }; // Store reflection const reflections = await this.loadReflections(); reflections.reflections.push({ type: 'cosmic_accuracy_review', data: cosmicReview, timestamp: new Date().toISOString() }); await this.saveReflections(reflections); return { content: [ { type: 'text', text: `🌌 **Cosmic Intelligence Accuracy Review**\n\n` + `šŸŽÆ **Prediction Accuracy**: ${accuracy}% (${correctPredictions}/${totalPredictions})\n` + `${accuracy > 60 ? '✨' : 'āš ļø'} Cosmic intelligence is ${accuracy > 60 ? 'highly effective' : 'needs calibration'}\n\n` + `**Recommendations:**\n` + `${accuracy > 70 ? '• Continue leveraging cosmic signals\n• Increase position sizing confidence' : '• Review planetary alignment calculations\n• Adjust quantum entanglement sensitivity'}\n` + `• Monitor performance across different market conditions\n` + `• Document cosmic patterns with highest accuracy`, }, ], }; } async generateImprovementPlan(analysisResults, focusAreas = []) { const plan = { analysis_date: new Date().toISOString(), focus_areas: focusAreas, analysis_results: analysisResults, }; let improvementPlan = `šŸ“‹ **BEHEMOTH Improvement Plan**\n\n`; if (focusAreas.length > 0) { improvementPlan += `šŸŽÆ **Focus Areas**:\n`; focusAreas.forEach(area => { improvementPlan += `• ${area}\n`; }); improvementPlan += `\n`; } improvementPlan += `šŸ”§ **Recommended Actions**:\n`; improvementPlan += `1. **Risk Management**: Review position sizing and stop loss placement\n`; improvementPlan += `2. **Strategy Optimization**: Backtest strategies across different market conditions\n`; improvementPlan += `3. **Cosmic Calibration**: Fine-tune cosmic intelligence sensitivity\n`; improvementPlan += `4. **Performance Tracking**: Implement more granular performance metrics\n`; improvementPlan += `5. **Multi-Agent Coordination**: Optimize agent consensus thresholds\n\n`; improvementPlan += `šŸ“Š **Success Metrics**:\n`; improvementPlan += `• Increase win rate to >60%\n`; improvementPlan += `• Improve profit factor to >1.5\n`; improvementPlan += `• Reduce maximum drawdown to <15%\n`; improvementPlan += `• Achieve >70% cosmic prediction accuracy\n`; // Store reflection const reflections = await this.loadReflections(); reflections.reflections.push({ type: 'improvement_plan', data: plan, timestamp: new Date().toISOString() }); await this.saveReflections(reflections); return { content: [ { type: 'text', text: improvementPlan, }, ], }; } async run() { const transport = new StdioServerTransport(); await this.server.connect(transport); } } const server = new BehemothReflectServer(); server.run().catch(console.error);