aws-cdk-lib
Version:
Version 2 of the AWS Cloud Development Kit library
1,397 lines (1,109 loc) • 73.2 kB
Markdown
# Amazon ECS Construct Library
This package contains constructs for working with **Amazon Elastic Container
Service** (Amazon ECS).
Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service.
For further information on Amazon ECS,
see the [Amazon ECS documentation](https://docs.aws.amazon.com/ecs)
The following example creates an Amazon ECS cluster, adds capacity to it, and
runs a service on it:
```ts
declare const vpc: ec2.Vpc;
// Create an ECS cluster
const cluster = new ecs.Cluster(this, 'Cluster', { vpc });
// Add capacity to it
cluster.addCapacity('DefaultAutoScalingGroupCapacity', {
instanceType: new ec2.InstanceType("t2.xlarge"),
desiredCapacity: 3,
});
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('DefaultContainer', {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
memoryLimitMiB: 512,
});
// Instantiate an Amazon ECS Service
const ecsService = new ecs.Ec2Service(this, 'Service', {
cluster,
taskDefinition,
minHealthyPercent: 100,
});
```
For a set of constructs defining common ECS architectural patterns, see the `aws-cdk-lib/aws-ecs-patterns` package.
## Launch Types: AWS Fargate vs Amazon EC2 vs AWS ECS Anywhere
There are three sets of constructs in this library:
- Use the `Ec2TaskDefinition` and `Ec2Service` constructs to run tasks on Amazon EC2 instances running in your account.
- Use the `FargateTaskDefinition` and `FargateService` constructs to run tasks on
instances that are managed for you by AWS.
- Use the `ExternalTaskDefinition` and `ExternalService` constructs to run AWS ECS Anywhere tasks on self-managed infrastructure.
Here are the main differences:
- **Amazon EC2**: instances are under your control. Complete control of task to host
allocation. Required to specify at least a memory reservation or limit for
every container. Can use Host, Bridge and AwsVpc networking modes. Can attach
Classic Load Balancer. Can share volumes between container and host.
- **AWS Fargate**: tasks run on AWS-managed instances, AWS manages task to host
allocation for you. Requires specification of memory and cpu sizes at the
taskdefinition level. Only supports AwsVpc networking modes and
Application/Network Load Balancers. Only the AWS log driver is supported.
Many host features are not supported such as adding kernel capabilities
and mounting host devices/volumes inside the container.
- **AWS ECS Anywhere**: tasks are run and managed by AWS ECS Anywhere on infrastructure
owned by the customer. Bridge, Host and None networking modes are supported. Does not
support autoscaling, load balancing, cloudmap or attachment of volumes.
For more information on Amazon EC2 vs AWS Fargate, networking and ECS Anywhere see the AWS Documentation:
[AWS Fargate](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html),
[Task Networking](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html),
[ECS Anywhere](https://aws.amazon.com/ecs/anywhere/)
## Clusters
A `Cluster` defines the infrastructure to run your
tasks on. You can run many tasks on a single cluster.
The following code creates a cluster that can run AWS Fargate tasks:
```ts
declare const vpc: ec2.Vpc;
const cluster = new ecs.Cluster(this, 'Cluster', {
vpc,
});
```
By default, storage is encrypted with AWS-managed key. You can specify customer-managed key using:
```ts
declare const key: kms.Key;
const cluster = new ecs.Cluster(this, 'Cluster', {
managedStorageConfiguration: {
fargateEphemeralStorageKmsKey: key,
kmsKey: key,
},
});
```
The following code imports an existing cluster using the ARN which can be used to
import an Amazon ECS service either EC2 or Fargate.
```ts
const clusterArn = 'arn:aws:ecs:us-east-1:012345678910:cluster/clusterName';
const cluster = ecs.Cluster.fromClusterArn(this, 'Cluster', clusterArn);
```
To use tasks with Amazon EC2 launch-type, you have to add capacity to
the cluster in order for tasks to be scheduled on your instances. Typically,
you add an AutoScalingGroup with instances running the latest
Amazon ECS-optimized AMI to the cluster. There is a method to build and add such an
AutoScalingGroup automatically, or you can supply a customized AutoScalingGroup
that you construct yourself. It's possible to add multiple AutoScalingGroups
with various instance types.
The following example creates an Amazon ECS cluster and adds capacity to it:
```ts
declare const vpc: ec2.Vpc;
const cluster = new ecs.Cluster(this, 'Cluster', {
vpc,
});
// Either add default capacity
cluster.addCapacity('DefaultAutoScalingGroupCapacity', {
instanceType: new ec2.InstanceType("t2.xlarge"),
desiredCapacity: 3,
});
// Or add customized capacity. Be sure to start the Amazon ECS-optimized AMI.
const autoScalingGroup = new autoscaling.AutoScalingGroup(this, 'ASG', {
vpc,
instanceType: new ec2.InstanceType('t2.xlarge'),
machineImage: ecs.EcsOptimizedImage.amazonLinux(),
// Or use Amazon ECS-Optimized Amazon Linux 2 AMI
// machineImage: EcsOptimizedImage.amazonLinux2(),
desiredCapacity: 3,
// ... other options here ...
});
const capacityProvider = new ecs.AsgCapacityProvider(this, 'AsgCapacityProvider', {
autoScalingGroup,
});
cluster.addAsgCapacityProvider(capacityProvider);
```
If you omit the property `vpc`, the construct will create a new VPC with two AZs.
By default, all machine images will auto-update to the latest version
on each deployment, causing a replacement of the instances in your AutoScalingGroup
if the AMI has been updated since the last deployment.
If task draining is enabled, ECS will transparently reschedule tasks on to the new
instances before terminating your old instances. If you have disabled task draining,
the tasks will be terminated along with the instance. To prevent that, you
can pick a non-updating AMI by passing `cacheInContext: true`, but be sure
to periodically update to the latest AMI manually by using the [CDK CLI
context management commands](https://docs.aws.amazon.com/cdk/latest/guide/context.html):
```ts
declare const vpc: ec2.Vpc;
const autoScalingGroup = new autoscaling.AutoScalingGroup(this, 'ASG', {
machineImage: ecs.EcsOptimizedImage.amazonLinux({ cachedInContext: true }),
vpc,
instanceType: new ec2.InstanceType('t2.micro'),
});
```
To use `LaunchTemplate` with `AsgCapacityProvider`, make sure to specify the `userData` in the `LaunchTemplate`:
```ts
declare const vpc: ec2.Vpc;
const launchTemplate = new ec2.LaunchTemplate(this, 'ASG-LaunchTemplate', {
instanceType: new ec2.InstanceType('t3.medium'),
machineImage: ecs.EcsOptimizedImage.amazonLinux2(),
userData: ec2.UserData.forLinux(),
});
const autoScalingGroup = new autoscaling.AutoScalingGroup(this, 'ASG', {
vpc,
mixedInstancesPolicy: {
instancesDistribution: {
onDemandPercentageAboveBaseCapacity: 50,
},
launchTemplate: launchTemplate,
},
});
const cluster = new ecs.Cluster(this, 'Cluster', { vpc });
const capacityProvider = new ecs.AsgCapacityProvider(this, 'AsgCapacityProvider', {
autoScalingGroup,
machineImageType: ecs.MachineImageType.AMAZON_LINUX_2,
});
cluster.addAsgCapacityProvider(capacityProvider);
```
The following code retrieve the Amazon Resource Names (ARNs) of tasks that are a part of a specified ECS cluster.
It's useful when you want to grant permissions to a task to access other AWS resources.
```ts
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
const taskARNs = cluster.arnForTasks('*'); // arn:aws:ecs:<region>:<regionId>:task/<clusterName>/*
// Grant the task permission to access other AWS resources
taskDefinition.addToTaskRolePolicy(
new iam.PolicyStatement({
actions: ['ecs:UpdateTaskProtection'],
resources: [taskARNs],
})
)
```
To manage task protection settings in an ECS cluster, you can use the `grantTaskProtection` method.
This method grants the `ecs:UpdateTaskProtection` permission to a specified IAM entity.
```ts
// Assume 'cluster' is an instance of ecs.Cluster
declare const cluster: ecs.Cluster;
declare const taskRole: iam.Role;
// Grant ECS Task Protection permissions to the role
// Now 'taskRole' has the 'ecs:UpdateTaskProtection' permission on all tasks in the cluster
cluster.grantTaskProtection(taskRole);
```
### Bottlerocket
[Bottlerocket](https://aws.amazon.com/bottlerocket/) is a Linux-based open source operating system that is
purpose-built by AWS for running containers. You can launch Amazon ECS container instances with the Bottlerocket AMI.
The following example will create a capacity with self-managed Amazon EC2 capacity of 2 `c5.large` Linux instances running with `Bottlerocket` AMI.
The following example adds Bottlerocket capacity to the cluster:
```ts
declare const cluster: ecs.Cluster;
cluster.addCapacity('bottlerocket-asg', {
minCapacity: 2,
instanceType: new ec2.InstanceType('c5.large'),
machineImage: new ecs.BottleRocketImage(),
});
```
You can also specify an NVIDIA-compatible AMI such as in this example:
```ts
declare const cluster: ecs.Cluster;
cluster.addCapacity('bottlerocket-asg', {
instanceType: new ec2.InstanceType('p3.2xlarge'),
machineImage: new ecs.BottleRocketImage({
variant: ecs.BottlerocketEcsVariant.AWS_ECS_2_NVIDIA,
}),
});
```
### ARM64 (Graviton) Instances
To launch instances with ARM64 hardware, you can use the Amazon ECS-optimized
Amazon Linux 2 (arm64) AMI. Based on Amazon Linux 2, this AMI is recommended
for use when launching your EC2 instances that are powered by Arm-based AWS
Graviton Processors.
```ts
declare const cluster: ecs.Cluster;
cluster.addCapacity('graviton-cluster', {
minCapacity: 2,
instanceType: new ec2.InstanceType('c6g.large'),
machineImage: ecs.EcsOptimizedImage.amazonLinux2(ecs.AmiHardwareType.ARM),
});
```
Bottlerocket is also supported:
```ts
declare const cluster: ecs.Cluster;
cluster.addCapacity('graviton-cluster', {
minCapacity: 2,
instanceType: new ec2.InstanceType('c6g.large'),
machineImageType: ecs.MachineImageType.BOTTLEROCKET,
});
```
### Amazon Linux 2 (Neuron) Instances
To launch Amazon EC2 Inf1, Trn1 or Inf2 instances, you can use the Amazon ECS optimized Amazon Linux 2 (Neuron) AMI. It comes pre-configured with AWS Inferentia and AWS Trainium drivers and the AWS Neuron runtime for Docker which makes running machine learning inference workloads easier on Amazon ECS.
```ts
declare const cluster: ecs.Cluster;
cluster.addCapacity('neuron-cluster', {
minCapacity: 2,
instanceType: new ec2.InstanceType('inf1.xlarge'),
machineImage: ecs.EcsOptimizedImage.amazonLinux2(ecs.AmiHardwareType.NEURON),
});
```
### Spot Instances
To add spot instances into the cluster, you must specify the `spotPrice` in the `ecs.AddCapacityOptions` and optionally enable the `spotInstanceDraining` property.
```ts
declare const cluster: ecs.Cluster;
// Add an AutoScalingGroup with spot instances to the existing cluster
cluster.addCapacity('AsgSpot', {
maxCapacity: 2,
minCapacity: 2,
desiredCapacity: 2,
instanceType: new ec2.InstanceType('c5.xlarge'),
spotPrice: '0.0735',
// Enable the Automated Spot Draining support for Amazon ECS
spotInstanceDraining: true,
});
```
### SNS Topic Encryption
When the `ecs.AddCapacityOptions` that you provide has a non-zero `taskDrainTime` (the default) then an SNS topic and Lambda are created to ensure that the
cluster's instances have been properly drained of tasks before terminating. The SNS Topic is sent the instance-terminating lifecycle event from the AutoScalingGroup,
and the Lambda acts on that event. If you wish to engage [server-side encryption](https://docs.aws.amazon.com/sns/latest/dg/sns-data-encryption.html) for this SNS Topic
then you may do so by providing a KMS key for the `topicEncryptionKey` property of `ecs.AddCapacityOptions`.
```ts
// Given
declare const cluster: ecs.Cluster;
declare const key: kms.Key;
// Then, use that key to encrypt the lifecycle-event SNS Topic.
cluster.addCapacity('ASGEncryptedSNS', {
instanceType: new ec2.InstanceType("t2.xlarge"),
desiredCapacity: 3,
topicEncryptionKey: key,
});
```
### Container Insights
On a cluster, CloudWatch Container Insights can be enabled by setting the `containerInsightsV2` property. [Container Insights](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-container-insights.html)
can be disabled, enabled, or enhanced.
```ts
const cluster = new ecs.Cluster(this, 'Cluster', {
containerInsightsV2: ecs.ContainerInsights.ENHANCED
});
```
## Task definitions
A task definition describes what a single copy of a **task** should look like.
A task definition has one or more containers; typically, it has one
main container (the *default container* is the first one that's added
to the task definition, and it is marked *essential*) and optionally
some supporting containers which are used to support the main container,
doings things like upload logs or metrics to monitoring services.
To run a task or service with Amazon EC2 launch type, use the `Ec2TaskDefinition`. For AWS Fargate tasks/services, use the
`FargateTaskDefinition`. For AWS ECS Anywhere use the `ExternalTaskDefinition`. These classes
provide simplified APIs that only contain properties relevant for each specific launch type.
For a `FargateTaskDefinition`, specify the task size (`memoryLimitMiB` and `cpu`):
```ts
const fargateTaskDefinition = new ecs.FargateTaskDefinition(this, 'TaskDef', {
memoryLimitMiB: 512,
cpu: 256,
});
```
On Fargate Platform Version 1.4.0 or later, you may specify up to 200GiB of
[ephemeral storage](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-storage.html#fargate-task-storage-pv14):
```ts
const fargateTaskDefinition = new ecs.FargateTaskDefinition(this, 'TaskDef', {
memoryLimitMiB: 512,
cpu: 256,
ephemeralStorageGiB: 100,
});
```
To specify the process namespace to use for the containers in the task, use the `pidMode` property:
```ts
const fargateTaskDefinition = new ecs.FargateTaskDefinition(this, 'TaskDef', {
runtimePlatform: {
operatingSystemFamily: ecs.OperatingSystemFamily.LINUX,
cpuArchitecture: ecs.CpuArchitecture.ARM64,
},
memoryLimitMiB: 512,
cpu: 256,
pidMode: ecs.PidMode.TASK,
});
```
**Note:** `pidMode` is only supported for tasks that are hosted on AWS Fargate if the tasks are using platform version 1.4.0
or later (Linux). Only the `task` option is supported for Linux containers. `pidMode` isn't supported for Windows containers on Fargate.
If `pidMode` is specified for a Fargate task, then `runtimePlatform.operatingSystemFamily` must also be specified.
To add containers to a task definition, call `addContainer()`:
```ts
const fargateTaskDefinition = new ecs.FargateTaskDefinition(this, 'TaskDef', {
memoryLimitMiB: 512,
cpu: 256,
});
const container = fargateTaskDefinition.addContainer("WebContainer", {
// Use an image from DockerHub
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
// ... other options here ...
});
```
For an `Ec2TaskDefinition`:
```ts
const ec2TaskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef', {
networkMode: ecs.NetworkMode.BRIDGE,
});
const container = ec2TaskDefinition.addContainer("WebContainer", {
// Use an image from DockerHub
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
memoryLimitMiB: 1024,
// ... other options here ...
});
```
For an `ExternalTaskDefinition`:
```ts
const externalTaskDefinition = new ecs.ExternalTaskDefinition(this, 'TaskDef');
const container = externalTaskDefinition.addContainer("WebContainer", {
// Use an image from DockerHub
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
memoryLimitMiB: 1024,
// ... other options here ...
});
```
You can specify container properties when you add them to the task definition, or with various methods, e.g.:
To add a port mapping when adding a container to the task definition, specify the `portMappings` option:
```ts
declare const taskDefinition: ecs.TaskDefinition;
taskDefinition.addContainer("WebContainer", {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
memoryLimitMiB: 1024,
portMappings: [{ containerPort: 3000 }],
});
```
To add port mappings directly to a container definition, call `addPortMappings()`:
```ts
declare const container: ecs.ContainerDefinition;
container.addPortMappings({
containerPort: 3000,
});
```
Sometimes it is useful to be able to configure port ranges for a container, e.g. to run applications such as game servers
and real-time streaming which typically require multiple ports to be opened simultaneously. This feature is supported on
both Linux and Windows operating systems for both the EC2 and AWS Fargate launch types. There is a maximum limit of 100
port ranges per container, and you cannot specify overlapping port ranges.
Docker recommends that you turn off the `docker-proxy` in the Docker daemon config file when you have a large number of ports.
For more information, see [Issue #11185](https://github.com/moby/moby/issues/11185) on the GitHub website.
```ts
declare const container: ecs.ContainerDefinition;
container.addPortMappings({
containerPort: ecs.ContainerDefinition.CONTAINER_PORT_USE_RANGE,
containerPortRange: '8080-8081',
});
```
To add data volumes to a task definition, call `addVolume()`:
```ts
const fargateTaskDefinition = new ecs.FargateTaskDefinition(this, 'TaskDef', {
memoryLimitMiB: 512,
cpu: 256,
});
const volume = {
// Use an Elastic FileSystem
name: "mydatavolume",
efsVolumeConfiguration: {
fileSystemId: "EFS",
// ... other options here ...
},
};
const container = fargateTaskDefinition.addVolume(volume);
```
> Note: ECS Anywhere doesn't support volume attachments in the task definition.
To use a TaskDefinition that can be used with either Amazon EC2 or
AWS Fargate launch types, use the `TaskDefinition` construct.
When creating a task definition you have to specify what kind of
tasks you intend to run: Amazon EC2, AWS Fargate, or both.
The following example uses both:
```ts
const taskDefinition = new ecs.TaskDefinition(this, 'TaskDef', {
memoryMiB: '512',
cpu: '256',
networkMode: ecs.NetworkMode.AWS_VPC,
compatibility: ecs.Compatibility.EC2_AND_FARGATE,
});
```
To grant a principal permission to run your `TaskDefinition`, you can use the `TaskDefinition.grantRun()` method:
```ts
declare const role: iam.IGrantable;
const taskDef = new ecs.TaskDefinition(this, 'TaskDef', {
cpu: '256',
memoryMiB: '512',
compatibility: ecs.Compatibility.EC2_AND_FARGATE,
});
// Gives role required permissions to run taskDef
taskDef.grantRun(role);
```
To deploy containerized applications that require the allocation of standard input (stdin) or a terminal (tty), use the `interactive` property.
This parameter corresponds to `OpenStdin` in the [Create a container](https://docs.docker.com/engine/api/v1.35/#tag/Container/operation/ContainerCreate) section of the [Docker Remote API](https://docs.docker.com/engine/api/v1.35/)
and the `--interactive` option to [docker run](https://docs.docker.com/engine/reference/run/#security-configuration).
```ts
declare const taskDefinition: ecs.TaskDefinition;
taskDefinition.addContainer("Container", {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
interactive: true,
});
```
### Images
Images supply the software that runs inside the container. Images can be
obtained from either DockerHub or from ECR repositories, built directly from a local Dockerfile, or use an existing tarball.
- `ecs.ContainerImage.fromRegistry(imageName)`: use a public image.
- `ecs.ContainerImage.fromRegistry(imageName, { credentials: mySecret })`: use a private image that requires credentials.
- `ecs.ContainerImage.fromEcrRepository(repo, tagOrDigest)`: use the given ECR repository as the image
to start. If no tag or digest is provided, "latest" is assumed.
- `ecs.ContainerImage.fromAsset('./image')`: build and upload an
image directly from a `Dockerfile` in your source directory.
- `ecs.ContainerImage.fromDockerImageAsset(asset)`: uses an existing
`aws-cdk-lib/aws-ecr-assets.DockerImageAsset` as a container image.
- `ecs.ContainerImage.fromTarball(file)`: use an existing tarball.
- `new ecs.TagParameterContainerImage(repository)`: use the given ECR repository as the image
but a CloudFormation parameter as the tag.
### Environment variables
To pass environment variables to the container, you can use the `environment`, `environmentFiles`, and `secrets` props.
```ts
declare const secret: secretsmanager.Secret;
declare const dbSecret: secretsmanager.Secret;
declare const parameter: ssm.StringParameter;
declare const taskDefinition: ecs.TaskDefinition;
declare const s3Bucket: s3.Bucket;
const newContainer = taskDefinition.addContainer('container', {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
memoryLimitMiB: 1024,
environment: { // clear text, not for sensitive data
STAGE: 'prod',
},
environmentFiles: [ // list of environment files hosted either on local disk or S3
ecs.EnvironmentFile.fromAsset('./demo-env-file.env'),
ecs.EnvironmentFile.fromBucket(s3Bucket, 'assets/demo-env-file.env'),
],
secrets: { // Retrieved from AWS Secrets Manager or AWS Systems Manager Parameter Store at container start-up.
SECRET: ecs.Secret.fromSecretsManager(secret),
DB_PASSWORD: ecs.Secret.fromSecretsManager(dbSecret, 'password'), // Reference a specific JSON field, (requires platform version 1.4.0 or later for Fargate tasks)
API_KEY: ecs.Secret.fromSecretsManagerVersion(secret, { versionId: '12345' }, 'apiKey'), // Reference a specific version of the secret by its version id or version stage (requires platform version 1.4.0 or later for Fargate tasks)
PARAMETER: ecs.Secret.fromSsmParameter(parameter),
},
});
newContainer.addEnvironment('QUEUE_NAME', 'MyQueue');
newContainer.addSecret('API_KEY', ecs.Secret.fromSecretsManager(secret));
newContainer.addSecret('DB_PASSWORD', ecs.Secret.fromSecretsManager(secret, 'password'));
```
The task execution role is automatically granted read permissions on the secrets/parameters. Further details provided in the AWS documentation
about [specifying environment variables](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/taskdef-envfiles.html).
### Linux parameters
To apply additional linux-specific options related to init process and memory management to the container, use the `linuxParameters` property:
```ts
declare const taskDefinition: ecs.TaskDefinition;
taskDefinition.addContainer('container', {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
memoryLimitMiB: 1024,
linuxParameters: new ecs.LinuxParameters(this, 'LinuxParameters', {
initProcessEnabled: true,
sharedMemorySize: 1024,
maxSwap: Size.mebibytes(5000),
swappiness: 90,
}),
});
```
### System controls
To set system controls (kernel parameters) on the container, use the `systemControls` prop:
```ts
declare const taskDefinition: ecs.TaskDefinition;
taskDefinition.addContainer('container', {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
memoryLimitMiB: 1024,
systemControls: [
{
namespace: 'net.ipv6.conf.all.default.disable_ipv6',
value: '1',
},
],
});
```
### Restart policy
To enable a restart policy for the container, set `enableRestartPolicy` to true and also specify
`restartIgnoredExitCodes` and `restartAttemptPeriod` if necessary.
```ts
declare const taskDefinition: ecs.TaskDefinition;
taskDefinition.addContainer('container', {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
enableRestartPolicy: true,
restartIgnoredExitCodes: [0, 127],
restartAttemptPeriod: Duration.seconds(360),
});
```
### Enable Fault Injection
You can utilize fault injection with Amazon ECS on both Amazon EC2 and Fargate to test how their application responds to certain impairment scenarios. These tests provide information you can use to optimize your application's performance and resiliency.
When fault injection is enabled, the Amazon ECS container agent allows tasks access to new fault injection endpoints.
Fault injection only works with tasks using the `AWS_VPC` or `HOST` network modes.
For more infomation, see [Use fault injection with your Amazon ECS and Fargate workloads](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fault-injection.html).
To enable Fault Injection for the task definiton, set `enableFaultInjection` to true.
```ts
new ecs.Ec2TaskDefinition(this, 'Ec2TaskDefinition', {
enableFaultInjection: true,
});
```
## Docker labels
You can add labels to the container with the `dockerLabels` property or with the `addDockerLabel` method:
```ts
declare const taskDefinition: ecs.TaskDefinition;
const container = taskDefinition.addContainer('cont', {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
memoryLimitMiB: 1024,
dockerLabels: {
foo: 'bar',
},
});
container.addDockerLabel('label', 'value');
```
### Using Windows containers on Fargate
AWS Fargate supports Amazon ECS Windows containers. For more details, please see this [blog post](https://aws.amazon.com/tw/blogs/containers/running-windows-containers-with-amazon-ecs-on-aws-fargate/)
```ts
// Create a Task Definition for the Windows container to start
const taskDefinition = new ecs.FargateTaskDefinition(this, 'TaskDef', {
runtimePlatform: {
operatingSystemFamily: ecs.OperatingSystemFamily.WINDOWS_SERVER_2019_CORE,
cpuArchitecture: ecs.CpuArchitecture.X86_64,
},
cpu: 1024,
memoryLimitMiB: 2048,
});
taskDefinition.addContainer('windowsservercore', {
logging: ecs.LogDriver.awsLogs({ streamPrefix: 'win-iis-on-fargate' }),
portMappings: [{ containerPort: 80 }],
image: ecs.ContainerImage.fromRegistry('mcr.microsoft.com/windows/servercore/iis:windowsservercore-ltsc2019'),
});
```
### Using Windows authentication with gMSA
Amazon ECS supports Active Directory authentication for Linux containers through a special kind of service account called a group Managed Service Account (gMSA). For more details, please see the [product documentation on how to implement on Windows containers](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html), or this [blog post on how to implement on Linux containers](https://aws.amazon.com/blogs/containers/using-windows-authentication-with-gmsa-on-linux-containers-on-amazon-ecs/).
There are two types of CredentialSpecs, domained-join or domainless. Both types support creation from a S3 bucket, a SSM parameter, or by directly specifying a location for the file in the constructor.
A domian-joined gMSA container looks like:
```ts
// Make sure the task definition's execution role has permissions to read from the S3 bucket or SSM parameter where the CredSpec file is stored.
declare const parameter: ssm.IParameter;
declare const taskDefinition: ecs.TaskDefinition;
// Domain-joined gMSA container from a SSM parameter
taskDefinition.addContainer('gmsa-domain-joined-container', {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
cpu: 128,
memoryLimitMiB: 256,
credentialSpecs: [ecs.DomainJoinedCredentialSpec.fromSsmParameter(parameter)],
});
```
A domianless gMSA container looks like:
```ts
// Make sure the task definition's execution role has permissions to read from the S3 bucket or SSM parameter where the CredSpec file is stored.
declare const bucket: s3.Bucket;
declare const taskDefinition: ecs.TaskDefinition;
// Domainless gMSA container from a S3 bucket object.
taskDefinition.addContainer('gmsa-domainless-container', {
image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-sample"),
cpu: 128,
memoryLimitMiB: 256,
credentialSpecs: [ecs.DomainlessCredentialSpec.fromS3Bucket(bucket, 'credSpec')],
});
```
### Using Graviton2 with Fargate
AWS Graviton2 supports AWS Fargate. For more details, please see this [blog post](https://aws.amazon.com/blogs/aws/announcing-aws-graviton2-support-for-aws-fargate-get-up-to-40-better-price-performance-for-your-serverless-containers/)
```ts
// Create a Task Definition for running container on Graviton Runtime.
const taskDefinition = new ecs.FargateTaskDefinition(this, 'TaskDef', {
runtimePlatform: {
operatingSystemFamily: ecs.OperatingSystemFamily.LINUX,
cpuArchitecture: ecs.CpuArchitecture.ARM64,
},
cpu: 1024,
memoryLimitMiB: 2048,
});
taskDefinition.addContainer('webarm64', {
logging: ecs.LogDriver.awsLogs({ streamPrefix: 'graviton2-on-fargate' }),
portMappings: [{ containerPort: 80 }],
image: ecs.ContainerImage.fromRegistry('public.ecr.aws/nginx/nginx:latest-arm64v8'),
});
```
## Service
A `Service` instantiates a `TaskDefinition` on a `Cluster` a given number of
times, optionally associating them with a load balancer.
If a task fails,
Amazon ECS automatically restarts the task.
```ts
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
const service = new ecs.FargateService(this, 'Service', {
cluster,
taskDefinition,
desiredCount: 5,
minHealthyPercent: 100,
});
```
ECS Anywhere service definition looks like:
```ts
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
const service = new ecs.ExternalService(this, 'Service', {
cluster,
taskDefinition,
desiredCount: 5,
minHealthyPercent: 100,
});
```
`Services` by default will create a security group if not provided.
If you'd like to specify which security groups to use you can override the `securityGroups` property.
By default, the service will use the revision of the passed task definition generated when the `TaskDefinition`
is deployed by CloudFormation. However, this may not be desired if the revision is externally managed,
for example through CodeDeploy.
To set a specific revision number or the special `latest` revision, use the `taskDefinitionRevision` parameter:
```ts
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
new ecs.ExternalService(this, 'Service', {
cluster,
taskDefinition,
desiredCount: 5,
minHealthyPercent: 100,
taskDefinitionRevision: ecs.TaskDefinitionRevision.of(1),
});
new ecs.ExternalService(this, 'Service', {
cluster,
taskDefinition,
desiredCount: 5,
minHealthyPercent: 100,
taskDefinitionRevision: ecs.TaskDefinitionRevision.LATEST,
});
```
### Deployment circuit breaker and rollback
Amazon ECS [deployment circuit breaker](https://aws.amazon.com/tw/blogs/containers/announcing-amazon-ecs-deployment-circuit-breaker/)
automatically rolls back unhealthy service deployments, eliminating the need for manual intervention.
Use `circuitBreaker` to enable the deployment circuit breaker which determines whether a service deployment
will fail if the service can't reach a steady state.
You can optionally enable `rollback` for automatic rollback.
See [Using the deployment circuit breaker](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-type-ecs.html) for more details.
```ts
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
const service = new ecs.FargateService(this, 'Service', {
cluster,
taskDefinition,
minHealthyPercent: 100,
circuitBreaker: {
enable: true,
rollback: true
},
});
```
> Note: ECS Anywhere doesn't support deployment circuit breakers and rollback.
### Deployment alarms
Amazon ECS [deployment alarms]
(https://aws.amazon.com/blogs/containers/automate-rollbacks-for-amazon-ecs-rolling-deployments-with-cloudwatch-alarms/)
allow monitoring and automatically reacting to changes during a rolling update
by using Amazon CloudWatch metric alarms.
Amazon ECS starts monitoring the configured deployment alarms as soon as one or
more tasks of the updated service are in a running state. The deployment process
continues until the primary deployment is healthy and has reached the desired
count and the active deployment has been scaled down to 0. Then, the deployment
remains in the IN_PROGRESS state for an additional "bake time." The length the
bake time is calculated based on the evaluation periods and period of the alarms.
After the bake time, if none of the alarms have been activated, then Amazon ECS
considers this to be a successful update and deletes the active deployment and
changes the status of the primary deployment to COMPLETED.
```ts
import * as cw from 'aws-cdk-lib/aws-cloudwatch';
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
declare const elbAlarm: cw.Alarm;
const service = new ecs.FargateService(this, 'Service', {
cluster,
taskDefinition,
minHealthyPercent: 100,
deploymentAlarms: {
alarmNames: [elbAlarm.alarmName],
behavior: ecs.AlarmBehavior.ROLLBACK_ON_ALARM,
},
});
// Defining a deployment alarm after the service has been created
const cpuAlarmName = 'MyCpuMetricAlarm';
new cw.Alarm(this, 'CPUAlarm', {
alarmName: cpuAlarmName,
metric: service.metricCpuUtilization(),
evaluationPeriods: 2,
threshold: 80,
});
service.enableDeploymentAlarms([cpuAlarmName], {
behavior: ecs.AlarmBehavior.FAIL_ON_ALARM,
});
```
> Note: Deployment alarms are only available when `deploymentController` is set
> to `DeploymentControllerType.ECS`, which is the default.
#### Troubleshooting circular dependencies
I saw this info message during synth time. What do I do?
```text
Deployment alarm ({"Ref":"MyAlarmABC1234"}) enabled on MyEcsService may cause a
circular dependency error when this stack deploys. The alarm name references the
alarm's logical id, or another resource. See the 'Deployment alarms' section in
the module README for more details.
```
If your app deploys successfully with this message, you can disregard it. But it
indicates that you could encounter a circular dependency error when you try to
deploy. If you want to alarm on metrics produced by the service, there will be a
circular dependency between the service and its deployment alarms. In this case,
there are two options to avoid the circular dependency.
1. Define the physical name for the alarm. Use a defined physical name that is
unique within the deployment environment for the alarm name when creating the
alarm, and re-use the defined name. This name could be a hardcoded string, a
string generated based on the environment, or could reference another
resource that does not depend on the service.
2. Define the physical name for the service. Then, don't use
`metricCpuUtilization()` or similar methods. Create the metric object
separately by referencing the service metrics using this name.
Option 1, defining a physical name for the alarm:
```ts
import * as cw from 'aws-cdk-lib/aws-cloudwatch';
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
const service = new ecs.FargateService(this, 'Service', {
cluster,
taskDefinition,
});
const cpuAlarmName = 'MyCpuMetricAlarm';
const myAlarm = new cw.Alarm(this, 'CPUAlarm', {
alarmName: cpuAlarmName,
metric: service.metricCpuUtilization(),
evaluationPeriods: 2,
threshold: 80,
});
// Using `myAlarm.alarmName` here will cause a circular dependency
service.enableDeploymentAlarms([cpuAlarmName], {
behavior: ecs.AlarmBehavior.FAIL_ON_ALARM,
});
```
Option 2, defining a physical name for the service:
```ts
import * as cw from 'aws-cdk-lib/aws-cloudwatch';
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
const serviceName = 'MyFargateService';
const service = new ecs.FargateService(this, 'Service', {
serviceName,
cluster,
taskDefinition,
minHealthyPercent: 100,
});
const cpuMetric = new cw.Metric({
metricName: 'CPUUtilization',
namespace: 'AWS/ECS',
period: Duration.minutes(5),
statistic: 'Average',
dimensionsMap: {
ClusterName: cluster.clusterName,
// Using `service.serviceName` here will cause a circular dependency
ServiceName: serviceName,
},
});
const myAlarm = new cw.Alarm(this, 'CPUAlarm', {
alarmName: 'cpuAlarmName',
metric: cpuMetric,
evaluationPeriods: 2,
threshold: 80,
});
service.enableDeploymentAlarms([myAlarm.alarmName], {
behavior: ecs.AlarmBehavior.FAIL_ON_ALARM,
});
```
This issue only applies if the metrics to alarm on are emitted by the service
itself. If the metrics are emitted by a different resource, that does not depend
on the service, there will be no restrictions on the alarm name.
### Include an application/network load balancer
`Services` are load balancing targets and can be added to a target group, which will be attached to an application/network load balancers:
```ts
declare const vpc: ec2.Vpc;
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
const service = new ecs.FargateService(this, 'Service', { cluster, taskDefinition, minHealthyPercent: 100 });
const lb = new elbv2.ApplicationLoadBalancer(this, 'LB', { vpc, internetFacing: true });
const listener = lb.addListener('Listener', { port: 80 });
const targetGroup1 = listener.addTargets('ECS1', {
port: 80,
targets: [service],
});
const targetGroup2 = listener.addTargets('ECS2', {
port: 80,
targets: [service.loadBalancerTarget({
containerName: 'MyContainer',
containerPort: 8080
})],
});
```
> Note: ECS Anywhere doesn't support application/network load balancers.
Note that in the example above, the default `service` only allows you to register the first essential container or the first mapped port on the container as a target and add it to a new target group. To have more control over which container and port to register as targets, you can use `service.loadBalancerTarget()` to return a load balancing target for a specific container and port.
Alternatively, you can also create all load balancer targets to be registered in this service, add them to target groups, and attach target groups to listeners accordingly.
```ts
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
declare const vpc: ec2.Vpc;
const service = new ecs.FargateService(this, 'Service', { cluster, taskDefinition, minHealthyPercent: 100 });
const lb = new elbv2.ApplicationLoadBalancer(this, 'LB', { vpc, internetFacing: true });
const listener = lb.addListener('Listener', { port: 80 });
service.registerLoadBalancerTargets(
{
containerName: 'web',
containerPort: 80,
newTargetGroupId: 'ECS',
listener: ecs.ListenerConfig.applicationListener(listener, {
protocol: elbv2.ApplicationProtocol.HTTPS
}),
},
);
```
### Using a Load Balancer from a different Stack
If you want to put your Load Balancer and the Service it is load balancing to in
different stacks, you may not be able to use the convenience methods
`loadBalancer.addListener()` and `listener.addTargets()`.
The reason is that these methods will create resources in the same Stack as the
object they're called on, which may lead to cyclic references between stacks.
Instead, you will have to create an `ApplicationListener` in the service stack,
or an empty `TargetGroup` in the load balancer stack that you attach your
service to.
See the [ecs/cross-stack-load-balancer example](https://github.com/aws-samples/aws-cdk-examples/tree/master/typescript/ecs/cross-stack-load-balancer/)
for the alternatives.
### Include a classic load balancer
`Services` can also be directly attached to a classic load balancer as targets:
```ts
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
declare const vpc: ec2.Vpc;
const service = new ecs.Ec2Service(this, 'Service', { cluster, taskDefinition, minHealthyPercent: 100 });
const lb = new elb.LoadBalancer(this, 'LB', { vpc });
lb.addListener({ externalPort: 80 });
lb.addTarget(service);
```
Similarly, if you want to have more control over load balancer targeting:
```ts
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
declare const vpc: ec2.Vpc;
const service = new ecs.Ec2Service(this, 'Service', { cluster, taskDefinition, minHealthyPercent: 100 });
const lb = new elb.LoadBalancer(this, 'LB', { vpc });
lb.addListener({ externalPort: 80 });
lb.addTarget(service.loadBalancerTarget({
containerName: 'MyContainer',
containerPort: 80,
}));
```
There are two higher-level constructs available which include a load balancer for you that can be found in the aws-ecs-patterns module:
- `LoadBalancedFargateService`
- `LoadBalancedEc2Service`
### Import existing services
`Ec2Service` and `FargateService` provide methods to import existing EC2/Fargate services.
The ARN of the existing service has to be specified to import the service.
Since AWS has changed the [ARN format for ECS](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#ecs-resource-ids),
feature flag `@aws-cdk/aws-ecs:arnFormatIncludesClusterName` must be enabled to use the new ARN format.
The feature flag changes behavior for the entire CDK project. Therefore it is not possible to mix the old and the new format in one CDK project.
```tss
declare const cluster: ecs.Cluster;
// Import service from EC2 service attributes
const service = ecs.Ec2Service.fromEc2ServiceAttributes(this, 'EcsService', {
serviceArn: 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service',
cluster,
});
// Import service from EC2 service ARN
const service = ecs.Ec2Service.fromEc2ServiceArn(this, 'EcsService', 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service');
// Import service from Fargate service attributes
const service = ecs.FargateService.fromFargateServiceAttributes(this, 'EcsService', {
serviceArn: 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service',
cluster,
});
// Import service from Fargate service ARN
const service = ecs.FargateService.fromFargateServiceArn(this, 'EcsService', 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service');
```
### Availability Zone rebalancing
ECS services running in AWS can be launched in multiple VPC subnets that are
each in different Availability Zones (AZs) to achieve high availability. Fargate
services launched this way will automatically try to achieve an even spread of
service tasks across AZs, and EC2 services can be instructed to do the same with
placement strategies. This ensures that the service has equal availability in
each AZ.
```ts
declare const vpc: ec2.Vpc;
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
const service = new ecs.FargateService(this, 'Service', {
cluster,
taskDefinition,
// Fargate will try to ensure an even spread of newly launched tasks across
// all AZs corresponding to the public subnets of the VPC.
vpcSubnets: { subnetType: ec2.SubnetType.PUBLIC },
});
```
However, those approaches only affect how newly launched tasks are placed.
Service tasks can still become unevenly spread across AZs if there is an
infrastructure event, like an AZ outage or a lack of available compute capacity
in an AZ. During such events, newly launched tasks may be placed in AZs in such
a way that tasks are not evenly spread across all AZs. After the infrastructure
event is over, the service will remain imbalanced until new tasks are launched
for some other reason, such as a service deployment.
Availability Zone rebalancing is a feature whereby ECS actively tries to correct
service AZ imbalances whenever they exist, by moving service tasks from
overbalanced AZs to underbalanced AZs. When an imbalance is detected, ECS will
launch new tasks in underbalanced AZs, then stop existing tasks in overbalanced
AZs, to ensure an even spread.
You can enabled Availability Zone rebalancing when creating your service:
```ts
declare const cluster: ecs.Cluster;
declare const taskDefinition: ecs.TaskDefinition;
const service = new ecs.FargateService(this, 'Service', {
cluster,
taskDefinition,
availabilityZoneRebalancing: ecs.AvailabilityZoneRebalancing.ENABLED,
});
```
Availability Zone rebalancing works in the following configurations:
- Services that use the Replica strategy.
- Services that specify Availability Zone spread as the first task placement
strategy, or do not specify a placement strategy.
You can't use Availability Zone rebalancing with services that meet any of the
following criteria:
- Uses the Daemon strategy.
- Uses the EXTERNAL launch type (ECSAnywhere).
- Uses 100% for the maximumPercent value.
- Uses a Classic Load Balancer.
- Uses the `attribute:ecs.availability-zone` as a task placement constraint.
## Task Auto-Scaling
You can configure the task count of a service to match demand. Task auto-scaling is
configured by calling `autoScaleTaskCount()`:
```ts
declare const target: elbv2.ApplicationTargetGroup;
declare const service: ecs.BaseService;
const scaling = service.autoScaleTaskCount({ maxCapacity: 10 });
scaling.scaleOnCpuUtilization('CpuScaling', {
targetUtilizationPercent: 50,
});
scaling.scaleOnRequestCount('RequestScaling', {
requestsPerTarget: 10000,
targetGroup: target,
});
```
Task auto-scaling is powered by *Application Auto-Scaling*.
See that section for details.
## Integration with CloudWatch Events
To start an Amazon ECS task on an Amazon EC2-backed Cluster, instantiate an
`aws-cdk-lib/aws-events-targets.EcsTask` instead of an `Ec2Service`:
```ts
declare const cluster: ecs.Cluster;
// Create a Task Definition for the container to start
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('TheContainer', {
image: ecs.ContainerImage.fromAsset(path.resolve(__dirname, '..', 'eventhandler-image')),
memoryLimitMiB: 256,
logging: new ecs.AwsLogDriver({ streamPrefix: 'EventDemo', mode: ecs.AwsLogDriverMode.NON_BLOCKING }),
});
// An Rule that describes the event trigger (in this case a scheduled run)
const rule = new events.Rule(this, 'Rule', {
schedule: events.Schedule.expression('rate(1 minute)'),
});
// Pass an environment variable to the container 'TheContainer' in the task
rule.addTarget(new targets.EcsTask({
cluster,
taskDefinition,
taskCount: 1,
containerOverrides: [{
containerName: 'TheContainer',
environment: [{
name: 'I_WAS_TRIGGERED',
value: 'From CloudWatch Events'
}],
}],
}));
```
## Log Drivers
Currently Supported Log Drivers:
- awslogs
- fluentd
- gelf
- journald
- json-file
- splunk
- syslog
- awsfirelens
- Generic
### awslogs Log Driver
```ts
// Create a Task Definition for the container to start
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('TheContainer', {
image: ecs.ContainerImage.fromRegistry('example-image'),
memoryLimitMiB: 256,
logging: ecs.LogDrivers.awsLogs({
streamPrefix: 'EventDemo',
mode: ecs.AwsLogDriverMode.NON_BLOCKING,
maxBufferSize: Size.mebibytes(25),
}),
});
```
### fluentd Log Driver
```ts
// Create a Task Definition for the container to start
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('TheContainer', {
image: ecs.ContainerImage.fromRegistry('example-image'),
memoryLimitMiB: 256,
logging: ecs.LogDrivers.fluentd(),
});
```
### gelf Log Driver
```ts
// Create a Task Definition for the container to start
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('TheContainer', {
image: ecs.ContainerImage.fromRegistry('example-image'),
memoryLimitMiB: 256,
logging: ecs.LogDrivers.gelf({ address: 'my-gelf-address' }),
});
```
### journald Log Driver
```ts
// Create a Task Definition for the container to start
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('TheContainer', {
image: ecs.ContainerImage.fromRegistry('example-image'),
memoryLimitMiB: 256,
logging: ecs.LogDrivers.journald(),
});
```
### json-file Log Driver
```ts
// Create a Task Definition for the container to start
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('TheContainer', {
image: ecs.ContainerImage.fromRegistry('example-image'),
memoryLimitMiB: 256,
logging: ecs.LogDrivers.jsonFile(),
});
```
### splunk Log Driver
```ts
declare const secret: ecs.Secret;
// Create a Task Definition for the container to start
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('TheContainer', {
image: ecs.ContainerImage.fromRegistry('example-image'),
memoryLimitMiB: 256,
logging: ecs.LogDrivers.splunk({
secretToken: secret,
url: 'my-splunk-url',
}),
});
```
### syslog Log Driver
```ts
// Create a Task Definition for the container to start
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('TheContainer', {
image: ecs.ContainerImage.fromRegistry('example-image'),
memoryLimitMiB: 256,
logging: ecs.LogDrivers.syslog(),
});
```
### firelens Log Driver
```ts
// Create a Task Definition for the container to start
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
taskDefinition.addContainer('TheContainer', {
image: ecs.ContainerImage.fromRegistry('example-image'),
memoryLimitMiB: 256,
logging: ecs.LogDrivers.firelens({
options: {
Name: 'firehose',
region: 'us-west-2',
delivery_stream: 'my-stream',
},
}),
});
```
To pass secrets to the log configuration, use the `secretOptions` property of the log configuration. The task execution role is automatically granted read permissions on the secrets/parameters.
```ts
declare const secret: secretsmanager.Secret;
declare const parameter: ssm.StringParameter;
const taskDefinition = new ecs.Ec2TaskDefinition(this, 'TaskDef');
ta