aws-cdk-lib
Version:
Version 2 of the AWS Cloud Development Kit library
96 lines (95 loc) • 3.7 kB
TypeScript
import { Construct } from 'constructs';
import { Ec2Service, Ec2TaskDefinition, PlacementConstraint, PlacementStrategy } from '../../../aws-ecs';
import { QueueProcessingServiceBase, QueueProcessingServiceBaseProps } from '../base/queue-processing-service-base';
/**
* The properties for the QueueProcessingEc2Service service.
*/
export interface QueueProcessingEc2ServiceProps extends QueueProcessingServiceBaseProps {
/**
* The number of cpu units used by the task.
*
* Valid values, which determines your range of valid values for the memory parameter:
*
* 256 (.25 vCPU) - Available memory values: 0.5GB, 1GB, 2GB
*
* 512 (.5 vCPU) - Available memory values: 1GB, 2GB, 3GB, 4GB
*
* 1024 (1 vCPU) - Available memory values: 2GB, 3GB, 4GB, 5GB, 6GB, 7GB, 8GB
*
* 2048 (2 vCPU) - Available memory values: Between 4GB and 16GB in 1GB increments
*
* 4096 (4 vCPU) - Available memory values: Between 8GB and 30GB in 1GB increments
*
* This default is set in the underlying FargateTaskDefinition construct.
*
* @default none
*/
readonly cpu?: number;
/**
* The hard limit (in MiB) of memory to present to the container.
*
* If your container attempts to exceed the allocated memory, the container
* is terminated.
*
* At least one of memoryLimitMiB and memoryReservationMiB is required for non-Fargate services.
*
* @default - No memory limit.
*/
readonly memoryLimitMiB?: number;
/**
* The soft limit (in MiB) of memory to reserve for the container.
*
* When system memory is under contention, Docker attempts to keep the
* container memory within the limit. If the container requires more memory,
* it can consume up to the value specified by the Memory property or all of
* the available memory on the container instance—whichever comes first.
*
* At least one of memoryLimitMiB and memoryReservationMiB is required for non-Fargate services.
*
* @default - No memory reserved.
*/
readonly memoryReservationMiB?: number;
/**
* Gpu count for container in task definition. Set this if you want to use gpu based instances.
*
* @default - No GPUs assigned.
*/
readonly gpuCount?: number;
/**
* Optional name for the container added
*
* @default - QueueProcessingContainer
*/
readonly containerName?: string;
/**
* The placement constraints to use for tasks in the service. For more information, see
* [Amazon ECS Task Placement Constraints](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement-constraints.html).
*
* @default - No constraints.
*/
readonly placementConstraints?: PlacementConstraint[];
/**
* The placement strategies to use for tasks in the service. For more information, see
* [Amazon ECS Task Placement Strategies](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement-strategies.html).
*
* @default - No strategies.
*/
readonly placementStrategies?: PlacementStrategy[];
}
/**
* Class to create a queue processing EC2 service.
*/
export declare class QueueProcessingEc2Service extends QueueProcessingServiceBase {
/**
* The EC2 service in this construct.
*/
readonly service: Ec2Service;
/**
* The EC2 task definition in this construct
*/
readonly taskDefinition: Ec2TaskDefinition;
/**
* Constructs a new instance of the QueueProcessingEc2Service class.
*/
constructor(scope: Construct, id: string, props?: QueueProcessingEc2ServiceProps);
}