UNPKG

awayjs-display

Version:
667 lines (548 loc) 16.7 kB
import IAsset from "awayjs-core/lib/library/IAsset"; import ElementsType from "../graphics/ElementsType"; import LineElements from "../graphics/LineElements"; import ElementsBase from "../graphics/ElementsBase"; import TriangleElements from "../graphics/TriangleElements"; import MaterialBase from "../materials/MaterialBase"; import PrimitivePrefabBase from "../prefabs/PrimitivePrefabBase"; /** * A Cylinder primitive sprite. */ class PrimitiveCylinderPrefab extends PrimitivePrefabBase { public _pBottomRadius:number; public _pSegmentsW:number; public _pSegmentsH:number; private _topRadius:number; private _height:number; private _topClosed:boolean; private _bottomClosed:boolean; private _surfaceClosed:boolean; private _yUp:boolean; private _numVertices:number = 0; /** * The radius of the top end of the cylinder. */ public get topRadius():number { return this._topRadius; } public set topRadius(value:number) { this._topRadius = value; this._pInvalidatePrimitive(); } /** * The radius of the bottom end of the cylinder. */ public get bottomRadius():number { return this._pBottomRadius; } public set bottomRadius(value:number) { this._pBottomRadius = value; this._pInvalidatePrimitive(); } /** * The radius of the top end of the cylinder. */ public get height():number { return this._height; } public set height(value:number) { this._height = value; this._pInvalidatePrimitive(); } /** * Defines the number of horizontal segments that make up the cylinder. Defaults to 16. */ public get segmentsW():number { return this._pSegmentsW; } public set segmentsW(value:number) { this.setSegmentsW(value); } public setSegmentsW(value:number) { this._pSegmentsW = value; this._pInvalidatePrimitive(); this._pInvalidateUVs(); } /** * Defines the number of vertical segments that make up the cylinder. Defaults to 1. */ public get segmentsH():number { return this._pSegmentsH; } public set segmentsH(value:number) { this.setSegmentsH(value) } public setSegmentsH(value:number) { this._pSegmentsH = value; this._pInvalidatePrimitive(); this._pInvalidateUVs(); } /** * Defines whether the top end of the cylinder is closed (true) or open. */ public get topClosed():boolean { return this._topClosed; } public set topClosed(value:boolean) { this._topClosed = value; this._pInvalidatePrimitive(); } /** * Defines whether the bottom end of the cylinder is closed (true) or open. */ public get bottomClosed():boolean { return this._bottomClosed; } public set bottomClosed(value:boolean) { this._bottomClosed = value; this._pInvalidatePrimitive(); } /** * Defines whether the cylinder poles should lay on the Y-axis (true) or on the Z-axis (false). */ public get yUp():boolean { return this._yUp; } public set yUp(value:boolean) { this._yUp = value; this._pInvalidatePrimitive(); } /** * Creates a new Cylinder object. * @param topRadius The radius of the top end of the cylinder. * @param bottomRadius The radius of the bottom end of the cylinder * @param height The radius of the bottom end of the cylinder * @param segmentsW Defines the number of horizontal segments that make up the cylinder. Defaults to 16. * @param segmentsH Defines the number of vertical segments that make up the cylinder. Defaults to 1. * @param topClosed Defines whether the top end of the cylinder is closed (true) or open. * @param bottomClosed Defines whether the bottom end of the cylinder is closed (true) or open. * @param yUp Defines whether the cone poles should lay on the Y-axis (true) or on the Z-axis (false). */ constructor(material:MaterialBase = null, elementsType:string = "triangle", topRadius:number = 50, bottomRadius:number = 50, height:number = 100, segmentsW:number = 16, segmentsH:number = 1, topClosed:boolean = true, bottomClosed:boolean = true, surfaceClosed:boolean = true, yUp:boolean = true) { super(material, elementsType); this._topRadius = topRadius; this._pBottomRadius = bottomRadius; this._height = height; this._pSegmentsW = segmentsW; this._pSegmentsH = segmentsH; this._topClosed = topClosed; this._bottomClosed = bottomClosed; this._surfaceClosed = surfaceClosed; this._yUp = yUp; } /** * @inheritDoc */ public _pBuildGraphics(target:ElementsBase, elementsType:string) { var indices:Uint16Array; var positions:ArrayBufferView; var normals:Float32Array; var tangents:Float32Array; var i:number; var j:number; var x:number; var y:number; var z:number; var vidx:number; var fidx:number; var radius:number; var revolutionAngle:number; var dr:number; var latNormElev:number; var latNormBase:number; var numIndices:number = 0; var comp1:number; var comp2:number; var startIndex:number = 0; var nextVertexIndex:number = 0; var centerVertexIndex:number = 0; var t1:number; var t2:number; // reset utility variables this._numVertices = 0; // evaluate revolution steps var revolutionAngleDelta:number = 2*Math.PI/this._pSegmentsW; if (elementsType == ElementsType.TRIANGLE) { var triangleGraphics:TriangleElements = <TriangleElements> target; // evaluate target number of vertices, triangles and indices if (this._surfaceClosed) { this._numVertices += (this._pSegmentsH + 1)*(this._pSegmentsW + 1); // segmentsH + 1 because of closure, segmentsW + 1 because of UV unwrapping numIndices += this._pSegmentsH*this._pSegmentsW*6; // each level has segmentW quads, each of 2 triangles } if (this._topClosed) { this._numVertices += 2*(this._pSegmentsW + 1); // segmentsW + 1 because of unwrapping numIndices += this._pSegmentsW*3; // one triangle for each segment } if (this._bottomClosed) { this._numVertices += 2*(this._pSegmentsW + 1); numIndices += this._pSegmentsW*3; } // need to initialize raw arrays or can be reused? if (this._numVertices == triangleGraphics.numVertices) { indices = triangleGraphics.indices.get(triangleGraphics.numElements); positions = triangleGraphics.positions.get(this._numVertices); normals = triangleGraphics.normals.get(this._numVertices); tangents = triangleGraphics.tangents.get(this._numVertices); } else { indices = new Uint16Array(numIndices); positions = new Float32Array(this._numVertices*3); normals = new Float32Array(this._numVertices*3); tangents = new Float32Array(this._numVertices*3); this._pInvalidateUVs(); } vidx = 0; fidx = 0; // top if (this._topClosed && this._topRadius > 0) { z = -0.5*this._height; // central vertex if (this._yUp) { t1 = 1; t2 = 0; comp1 = -z; comp2 = 0; } else { t1 = 0; t2 = -1; comp1 = 0; comp2 = z; } positions[vidx] = 0; positions[vidx + 1] = comp1; positions[vidx + 2] = comp2; normals[vidx] = 0; normals[vidx + 1] = t1; normals[vidx + 2] = t2; tangents[vidx] = 1; tangents[vidx + 1] = 0; tangents[vidx + 2] = 0; vidx += 3; nextVertexIndex += 1; for (i = 0; i <= this._pSegmentsW; ++i) { // revolution vertex revolutionAngle = i*revolutionAngleDelta; x = this._topRadius*Math.cos(revolutionAngle); y = this._topRadius*Math.sin(revolutionAngle); if (this._yUp) { comp1 = -z; comp2 = y; } else { comp1 = y; comp2 = z; } if (i == this._pSegmentsW) { positions[vidx] = positions[startIndex + 3]; positions[vidx + 1] = positions[startIndex + 4]; positions[vidx + 2] = positions[startIndex + 5]; } else { positions[vidx] = x; positions[vidx + 1] = comp1; positions[vidx + 2] = comp2; } normals[vidx] = 0; normals[vidx + 1] = t1; normals[vidx + 2] = t2; tangents[vidx] = 1; tangents[vidx + 1] = 0; tangents[vidx + 2] = 0; vidx += 3; if (i > 0) { // add triangle indices[fidx++] = nextVertexIndex - 1; indices[fidx++] = centerVertexIndex; indices[fidx++] = nextVertexIndex; } nextVertexIndex += 1; } } // bottom if (this._bottomClosed && this._pBottomRadius > 0) { z = 0.5*this._height; startIndex = nextVertexIndex*3; centerVertexIndex = nextVertexIndex; // central vertex if (this._yUp) { t1 = -1; t2 = 0; comp1 = -z; comp2 = 0; } else { t1 = 0; t2 = 1; comp1 = 0; comp2 = z; } if (i > 0) { positions[vidx] = 0; positions[vidx + 1] = comp1; positions[vidx + 2] = comp2; normals[vidx] = 0; normals[vidx + 1] = t1; normals[vidx + 2] = t2; tangents[vidx] = 1; tangents[vidx + 1] = 0; tangents[vidx + 2] = 0; vidx += 3; } nextVertexIndex += 1; for (i = 0; i <= this._pSegmentsW; ++i) { // revolution vertex revolutionAngle = i*revolutionAngleDelta; x = this._pBottomRadius*Math.cos(revolutionAngle); y = this._pBottomRadius*Math.sin(revolutionAngle); if (this._yUp) { comp1 = -z; comp2 = y; } else { comp1 = y; comp2 = z; } if (i == this._pSegmentsW) { positions[vidx] = positions[startIndex + 3]; positions[vidx + 1] = positions[startIndex + 4]; positions[vidx + 2] = positions[startIndex + 5]; } else { positions[vidx] = x; positions[vidx + 1] = comp1; positions[vidx + 2] = comp2; } normals[vidx] = 0; normals[vidx + 1] = t1; normals[vidx + 2] = t2; tangents[vidx] = 1; tangents[vidx + 1] = 0; tangents[vidx + 2] = 0; vidx += 3; if (i > 0) { // add triangle indices[fidx++] = nextVertexIndex - 1; indices[fidx++] = nextVertexIndex; indices[fidx++] = centerVertexIndex; } nextVertexIndex += 1; } } // The normals on the lateral surface all have the same incline, i.e. // the "elevation" component (Y or Z depending on yUp) is constant. // Same principle goes for the "base" of these vectors, which will be // calculated such that a vector [base,elev] will be a unit vector. dr = (this._pBottomRadius - this._topRadius); latNormElev = dr/this._height; latNormBase = (latNormElev == 0)? 1 : this._height/dr; // lateral surface if (this._surfaceClosed) { var a:number; var b:number; var c:number; var d:number; var na0:number, na1:number, naComp1:number, naComp2:number; for (j = 0; j <= this._pSegmentsH; ++j) { radius = this._topRadius - ((j/this._pSegmentsH)*(this._topRadius - this._pBottomRadius)); z = -(this._height/2) + (j/this._pSegmentsH*this._height); startIndex = nextVertexIndex*3; for (i = 0; i <= this._pSegmentsW; ++i) { // revolution vertex revolutionAngle = i*revolutionAngleDelta; x = radius*Math.cos(revolutionAngle); y = radius*Math.sin(revolutionAngle); na0 = latNormBase*Math.cos(revolutionAngle); na1 = latNormBase*Math.sin(revolutionAngle); if (this._yUp) { t1 = 0; t2 = -na0; comp1 = -z; comp2 = y; naComp1 = latNormElev; naComp2 = na1; } else { t1 = -na0; t2 = 0; comp1 = y; comp2 = z; naComp1 = na1; naComp2 = latNormElev; } if (i == this._pSegmentsW) { positions[vidx] = positions[startIndex]; positions[vidx + 1] = positions[startIndex + 1]; positions[vidx + 2] = positions[startIndex + 2]; normals[vidx] = na0; normals[vidx + 1] = latNormElev; normals[vidx + 2] = na1; tangents[vidx] = na1; tangents[vidx + 1] = t1; tangents[vidx + 2] = t2; } else { positions[vidx] = x; positions[vidx + 1] = comp1; positions[vidx + 2] = comp2; normals[vidx] = na0; normals[vidx + 1] = naComp1; normals[vidx + 2] = naComp2; tangents[vidx] = -na1; tangents[vidx + 1] = t1; tangents[vidx + 2] = t2; } vidx += 3; // close triangle if (i > 0 && j > 0) { a = nextVertexIndex; // current b = nextVertexIndex - 1; // previous c = b - this._pSegmentsW - 1; // previous of last level d = a - this._pSegmentsW - 1; // current of last level indices[fidx++] = a; indices[fidx++] = b; indices[fidx++] = c; indices[fidx++] = a; indices[fidx++] = c; indices[fidx++] = d; } nextVertexIndex++; } } } // build real data from raw data triangleGraphics.setIndices(indices); triangleGraphics.setPositions(positions); triangleGraphics.setNormals(normals); triangleGraphics.setTangents(tangents); } else if (elementsType == ElementsType.LINE) { var lineGraphics:LineElements = <LineElements> target; var numSegments:number = this._pSegmentsH*this._pSegmentsW*2 + this._pSegmentsW; positions = new Float32Array(numSegments*6); var thickness:Float32Array = new Float32Array(numSegments); vidx = 0; fidx = 0; var _radius = 50; for (j = 0; j <= this._pSegmentsH; ++j) { radius = this._topRadius - ((j/this._pSegmentsH)*(this._topRadius - this._pBottomRadius)); z = -(this._height/2) + (j/this._pSegmentsH*this._height); for (i = 0; i <= this._pSegmentsW; ++i) { // revolution vertex revolutionAngle = i*revolutionAngleDelta; x = radius*Math.cos(revolutionAngle); y = radius*Math.sin(revolutionAngle); if (this._yUp) { comp1 = -z; comp2 = y; } else { comp1 = y; comp2 = z; } if (i > 0) { //horizonal lines positions[vidx++] = x; positions[vidx++] = comp1; positions[vidx++] = comp2; thickness[fidx++] = 1; //vertical lines if (j > 0) { var addx:number = (j == 1)? 3 - (6*(this._pSegmentsW-i) + 12*i) : 3 - this._pSegmentsW*12; positions[vidx] = positions[vidx++ + addx]; positions[vidx] = positions[vidx++ + addx]; positions[vidx] = positions[vidx++ + addx]; positions[vidx++] = x; positions[vidx++] = comp1; positions[vidx++] = comp2; thickness[fidx++] = 1; } } //horizonal lines if (i < this._pSegmentsW) { positions[vidx++] = x; positions[vidx++] = comp1; positions[vidx++] = comp2; } } } // build real data from raw data lineGraphics.setPositions(positions); lineGraphics.setThickness(thickness); } } /** * @inheritDoc */ public _pBuildUVs(target:ElementsBase, elementsType:string) { var i:number; var j:number; var x:number; var y:number; var revolutionAngle:number; var uvs:ArrayBufferView; if (elementsType == ElementsType.TRIANGLE) { var triangleGraphics:TriangleElements = <TriangleElements> target; // need to initialize raw array or can be reused? if (triangleGraphics.uvs && this._numVertices == triangleGraphics.numVertices) { uvs = triangleGraphics.uvs.get(this._numVertices); } else { uvs = new Float32Array(this._numVertices*2); } // evaluate revolution steps var revolutionAngleDelta:number = 2*Math.PI/this._pSegmentsW; // current uv component index var index:number = 0; // top if (this._topClosed) { uvs[index++] = 0.5*this._scaleU; // central vertex uvs[index++] = 0.5*this._scaleV; for (i = 0; i <= this._pSegmentsW; ++i) { revolutionAngle = i*revolutionAngleDelta; x = 0.5 + 0.5* -Math.cos(revolutionAngle); y = 0.5 + 0.5*Math.sin(revolutionAngle); uvs[index++] = x*this._scaleU; // revolution vertex uvs[index++] = y*this._scaleV; } } // bottom if (this._bottomClosed) { uvs[index++] = 0.5*this._scaleU; // central vertex uvs[index++] = 0.5*this._scaleV; for (i = 0; i <= this._pSegmentsW; ++i) { revolutionAngle = i*revolutionAngleDelta; x = 0.5 + 0.5*Math.cos(revolutionAngle); y = 0.5 + 0.5*Math.sin(revolutionAngle); uvs[index++] = x*this._scaleU; // revolution vertex uvs[index++] = y*this._scaleV; } } // lateral surface if (this._surfaceClosed) { for (j = 0; j <= this._pSegmentsH; ++j) { for (i = 0; i <= this._pSegmentsW; ++i) { // revolution vertex uvs[index++] = ( i/this._pSegmentsW )*this._scaleU; uvs[index++] = ( j/this._pSegmentsH )*this._scaleV; } } } // build real data from raw data triangleGraphics.setUVs(uvs); } else if (elementsType == ElementsType.LINE) { //nothing to do here } } } export default PrimitiveCylinderPrefab;