UNPKG

avl-tree-typed

Version:
451 lines (363 loc) 16.2 kB
![NPM](https://img.shields.io/npm/l/avl-tree-typed) ![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed) ![npm](https://img.shields.io/npm/dw/avl-tree-typed) ![eslint](https://aleen42.github.io/badges/src/eslint.svg) ![npm bundle size](https://img.shields.io/bundlephobia/minzip/avl-tree-typed) ![npm bundle size](https://img.shields.io/bundlephobia/min/avl-tree-typed) ![npm](https://img.shields.io/npm/v/avl-tree-typed) # What ## Brief This is a standalone AVL Tree data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete [data-structure-typed](https://www.npmjs.com/package/data-structure-typed) package # How ## install ### npm ```bash npm i avl-tree-typed --save ``` ### yarn ```bash yarn add avl-tree-typed ``` ### snippet #### TS ```typescript import {AVLTree, AVLTreeNode} from 'data-structure-typed'; // /* or if you prefer */ import {AVLTree} from 'avl-tree-typed'; const avlTree = new AVLTree<AVLTreeNode<number>>(); const idsOrVals = [11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]; avlTree.addMany(idsOrVals, idsOrVals); const node6 = avlTree.get(6); node6 && avlTree.getHeight(node6) // 3 node6 && avlTree.getDepth(node6) // 1 const getNodeById = avlTree.get(10, 'id'); getNodeById?.id // 10 const getMinNodeByRoot = avlTree.getLeftMost(); getMinNodeByRoot?.id // 1 const node15 = avlTree.get(15); const getMinNodeBySpecificNode = node15 && avlTree.getLeftMost(node15); getMinNodeBySpecificNode?.id // 12 const subTreeSum = node15 && avlTree.subTreeSum(node15); subTreeSum // 70 const lesserSum = avlTree.lesserSum(10); lesserSum // 45 const node11 = avlTree.get(11); node11?.id // 11 const dfs = avlTree.DFS('in', 'node'); dfs[0].id // 1 avlTree.perfectlyBalance(); const bfs = avlTree.BFS('node'); avlTree.isPerfectlyBalanced() && bfs[0].id // 8 avlTree.remove(11, true)[0].deleted?.id // 11 avlTree.isAVLBalanced(); // true node15 && avlTree.getHeight(node15) // 2 avlTree.remove(1, true)[0].deleted?.id // 1 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 4 avlTree.remove(4, true)[0].deleted?.id // 4 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 4 avlTree.remove(10, true)[0].deleted?.id // 10 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(15, true)[0].deleted?.id // 15 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(5, true)[0].deleted?.id // 5 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(13, true)[0].deleted?.id // 13 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(3, true)[0].deleted?.id // 3 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(8, true)[0].deleted?.id // 8 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(6, true)[0].deleted?.id // 6 avlTree.remove(6, true).length // 0 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 2 avlTree.remove(7, true)[0].deleted?.id // 7 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 2 avlTree.remove(9, true)[0].deleted?.id // 9 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 2 avlTree.remove(14, true)[0].deleted?.id // 14 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 1 avlTree.isAVLBalanced(); // true const lastBFSIds = avlTree.BFS(); lastBFSIds[0] // 12 const lastBFSNodes = avlTree.BFS('node'); lastBFSNodes[0].id // 12 ``` #### JS ```javascript const {AVLTree} = require('data-structure-typed'); // /* or if you prefer */ const {AVLTree} = require('avl-tree-typed'); const avlTree = new AVLTree(); const idsOrVals = [11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]; avlTree.addMany(idsOrVals, idsOrVals); const node6 = avlTree.get(6); node6 && avlTree.getHeight(node6) // 3 node6 && avlTree.getDepth(node6) // 1 const getNodeById = avlTree.get(10, 'id'); getNodeById?.id // 10 const getMinNodeByRoot = avlTree.getLeftMost(); getMinNodeByRoot?.id // 1 const node15 = avlTree.get(15); const getMinNodeBySpecificNode = node15 && avlTree.getLeftMost(node15); getMinNodeBySpecificNode?.id // 12 const subTreeSum = node15 && avlTree.subTreeSum(node15); subTreeSum // 70 const lesserSum = avlTree.lesserSum(10); lesserSum // 45 const node11 = avlTree.get(11); node11?.id // 11 const dfs = avlTree.DFS('in', 'node'); dfs[0].id // 1 avlTree.perfectlyBalance(); const bfs = avlTree.BFS('node'); avlTree.isPerfectlyBalanced() && bfs[0].id // 8 avlTree.remove(11, true)[0].deleted?.id // 11 avlTree.isAVLBalanced(); // true node15 && avlTree.getHeight(node15) // 2 avlTree.remove(1, true)[0].deleted?.id // 1 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 4 avlTree.remove(4, true)[0].deleted?.id // 4 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 4 avlTree.remove(10, true)[0].deleted?.id // 10 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(15, true)[0].deleted?.id // 15 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(5, true)[0].deleted?.id // 5 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(13, true)[0].deleted?.id // 13 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(3, true)[0].deleted?.id // 3 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(8, true)[0].deleted?.id // 8 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 3 avlTree.remove(6, true)[0].deleted?.id // 6 avlTree.remove(6, true).length // 0 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 2 avlTree.remove(7, true)[0].deleted?.id // 7 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 2 avlTree.remove(9, true)[0].deleted?.id // 9 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 2 avlTree.remove(14, true)[0].deleted?.id // 14 avlTree.isAVLBalanced(); // true avlTree.getHeight() // 1 avlTree.isAVLBalanced(); // true const lastBFSIds = avlTree.BFS(); lastBFSIds[0] // 12 const lastBFSNodes = avlTree.BFS('node'); lastBFSNodes[0].id // 12 ``` [//]: # (No deletion!!! Start of Example Replace Section) ### Find elements in a range ```typescript type Datum = { timestamp: Date; temperature: number }; // Fixed dataset of CPU temperature readings const cpuData: Datum[] = [ { timestamp: new Date('2024-12-02T00:00:00'), temperature: 55.1 }, { timestamp: new Date('2024-12-02T00:01:00'), temperature: 56.3 }, { timestamp: new Date('2024-12-02T00:02:00'), temperature: 54.8 }, { timestamp: new Date('2024-12-02T00:03:00'), temperature: 57.2 }, { timestamp: new Date('2024-12-02T00:04:00'), temperature: 58.0 }, { timestamp: new Date('2024-12-02T00:05:00'), temperature: 59.4 }, { timestamp: new Date('2024-12-02T00:06:00'), temperature: 60.1 }, { timestamp: new Date('2024-12-02T00:07:00'), temperature: 61.3 }, { timestamp: new Date('2024-12-02T00:08:00'), temperature: 62.0 }, { timestamp: new Date('2024-12-02T00:09:00'), temperature: 63.5 }, { timestamp: new Date('2024-12-02T00:10:00'), temperature: 64.0 }, { timestamp: new Date('2024-12-02T00:11:00'), temperature: 62.8 }, { timestamp: new Date('2024-12-02T00:12:00'), temperature: 61.5 }, { timestamp: new Date('2024-12-02T00:13:00'), temperature: 60.2 }, { timestamp: new Date('2024-12-02T00:14:00'), temperature: 59.8 }, { timestamp: new Date('2024-12-02T00:15:00'), temperature: 58.6 }, { timestamp: new Date('2024-12-02T00:16:00'), temperature: 57.4 }, { timestamp: new Date('2024-12-02T00:17:00'), temperature: 56.2 }, { timestamp: new Date('2024-12-02T00:18:00'), temperature: 55.7 }, { timestamp: new Date('2024-12-02T00:19:00'), temperature: 54.5 }, { timestamp: new Date('2024-12-02T00:20:00'), temperature: 53.2 }, { timestamp: new Date('2024-12-02T00:21:00'), temperature: 52.8 }, { timestamp: new Date('2024-12-02T00:22:00'), temperature: 51.9 }, { timestamp: new Date('2024-12-02T00:23:00'), temperature: 50.5 }, { timestamp: new Date('2024-12-02T00:24:00'), temperature: 49.8 }, { timestamp: new Date('2024-12-02T00:25:00'), temperature: 48.7 }, { timestamp: new Date('2024-12-02T00:26:00'), temperature: 47.5 }, { timestamp: new Date('2024-12-02T00:27:00'), temperature: 46.3 }, { timestamp: new Date('2024-12-02T00:28:00'), temperature: 45.9 }, { timestamp: new Date('2024-12-02T00:29:00'), temperature: 45.0 } ]; // Create an AVL tree to store CPU temperature data const cpuTemperatureTree = new AVLTree<Date, number, Datum>(cpuData, { toEntryFn: ({ timestamp, temperature }) => [timestamp, temperature] }); // Query a specific time range (e.g., from 00:05 to 00:15) const rangeStart = new Date('2024-12-02T00:05:00'); const rangeEnd = new Date('2024-12-02T00:15:00'); const rangeResults = cpuTemperatureTree.rangeSearch([rangeStart, rangeEnd], node => ({ minute: node ? node.key.getMinutes() : 0, temperature: cpuTemperatureTree.get(node ? node.key : undefined) })); console.log(rangeResults); // [ // { minute: 5, temperature: 59.4 }, // { minute: 6, temperature: 60.1 }, // { minute: 7, temperature: 61.3 }, // { minute: 8, temperature: 62 }, // { minute: 9, temperature: 63.5 }, // { minute: 10, temperature: 64 }, // { minute: 11, temperature: 62.8 }, // { minute: 12, temperature: 61.5 }, // { minute: 13, temperature: 60.2 }, // { minute: 14, temperature: 59.8 }, // { minute: 15, temperature: 58.6 } // ] ``` [//]: # (No deletion!!! End of Example Replace Section) ## API docs & Examples [API Docs](https://data-structure-typed-docs.vercel.app) [Live Examples](https://vivid-algorithm.vercel.app) <a href="https://github.com/zrwusa/vivid-algorithm" target="_blank">Examples Repository</a> ## Data Structures <table> <thead> <tr> <th>Data Structure</th> <th>Unit Test</th> <th>Performance Test</th> <th>API Docs</th> </tr> </thead> <tbody> <tr> <td>AVL Tree</td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><a href="https://data-structure-typed-docs.vercel.app/classes/AVLTree.html"><span>AVLTree</span></a></td> </tr> </tbody> </table> ## Standard library data structure comparison <table> <thead> <tr> <th>Data Structure Typed</th> <th>C++ STL</th> <th>java.util</th> <th>Python collections</th> </tr> </thead> <tbody> <tr> <td>AVLTree&lt;K, V&gt;</td> <td>-</td> <td>-</td> <td>-</td> </tr> </tbody> </table> ## Benchmark [//]: # (No deletion!!! Start of Replace Section) <div class="json-to-html-collapse clearfix 0"> <div class='collapsible level0' ><span class='json-to-html-label'>avl-tree</span></div> <div class="content"><table style="display: table; width:100%; table-layout: fixed;"><tr><th>test name</th><th>time taken (ms)</th><th>executions per sec</th><th>sample deviation</th></tr><tr><td>10,000 add randomly</td><td>31.32</td><td>31.93</td><td>3.67e-4</td></tr><tr><td>10,000 add & delete randomly</td><td>70.90</td><td>14.10</td><td>0.00</td></tr><tr><td>10,000 addMany</td><td>40.58</td><td>24.64</td><td>4.87e-4</td></tr><tr><td>10,000 get</td><td>27.31</td><td>36.62</td><td>2.00e-4</td></tr></table></div> </div> [//]: # (No deletion!!! End of Replace Section) ## Built-in classic algorithms <table> <thead> <tr> <th>Algorithm</th> <th>Function Description</th> <th>Iteration Type</th> </tr> </thead> <tbody> <tr> <td>Binary Tree DFS</td> <td>Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree, and then the right subtree, using recursion. </td> <td>Recursion + Iteration</td> </tr> <tr> <td>Binary Tree BFS</td> <td>Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level from left to right. </td> <td>Iteration</td> </tr> <tr> <td>Binary Tree Morris</td> <td>Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree traversal without additional stack or recursion. </td> <td>Iteration</td> </tr> </tbody> </table> ## Software Engineering Design Standards <table> <tr> <th>Principle</th> <th>Description</th> </tr> <tr> <td>Practicality</td> <td>Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.</td> </tr> <tr> <td>Extensibility</td> <td>Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.</td> </tr> <tr> <td>Modularization</td> <td>Includes data structure modularization and independent NPM packages.</td> </tr> <tr> <td>Efficiency</td> <td>All methods provide time and space complexity, comparable to native JS performance.</td> </tr> <tr> <td>Maintainability</td> <td>Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.</td> </tr> <tr> <td>Testability</td> <td>Automated and customized unit testing, performance testing, and integration testing.</td> </tr> <tr> <td>Portability</td> <td>Plans for porting to Java, Python, and C++, currently achieved to 80%.</td> </tr> <tr> <td>Reusability</td> <td>Fully decoupled, minimized side effects, and adheres to OOP.</td> </tr> <tr> <td>Security</td> <td>Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.</td> </tr> <tr> <td>Scalability</td> <td>Data structure software does not involve load issues.</td> </tr> </table>