UNPKG

automata-metaverse

Version:

Automaton execution engines for self-referential CanvasL/JSONL systems

308 lines 12.8 kB
#!/usr/bin/env node /** * Optimized Self-Instantiation Bootstrap * Implements the optimal strategy for bootstrapping the automaton from * automaton-kernel.jsonl and integrating with OpenCode components */ import { writeFileSync, existsSync } from 'fs'; import { MetaLogDb } from 'meta-log-db'; class OptimizedBootstrap { constructor(config) { this.kernelObjects = []; this.automatonObjects = []; // Dimensional progression configuration this.dimensionalPath = [ { dimension: '0D', kernelLine: 2, operation: 'identity', church: 'λf.λx.x', next: '1D' }, { dimension: '1D', kernelLine: 4, operation: 'successor', church: 'λn.λf.λx.f(nfx)', next: '2D' }, { dimension: '2D', kernelLine: 6, operation: 'pair', church: 'λx.λy.λf.fxy', next: '3D' }, { dimension: '3D', kernelLine: 8, operation: 'addition', church: 'λm.λn.λf.λx.mf(nfx)', next: '4D' }, { dimension: '4D', kernelLine: 10, operation: 'network', church: 'λnetwork.execute(spacetime)', next: '5D' }, { dimension: '5D', kernelLine: 12, operation: 'consensus', church: 'λconsensus.validate(ledger)', next: '6D' }, { dimension: '6D', kernelLine: 14, operation: 'intelligence', church: 'λai.attention(transform)', next: '7D' }, { dimension: '7D', kernelLine: 16, operation: 'quantum', church: 'λquantum.superposition(ψ)' } ]; // Default to automaton-evolutions canonical files if available // Note: automaton-kernel.jsonl is the full kernel (generated from seed) // For seed file, use AUTOMATON_FILES.a1KernelSeed from automaton-evolutions this.kernelPath = config?.kernelPath || './automaton-kernel.jsonl'; this.automatonPath = config?.automatonPath || './automaton.jsonl'; this.db = config?.db || new MetaLogDb({ enableProlog: true, enableDatalog: true, enableShacl: true }); } /** * Main bootstrap entry point */ async bootstrap() { console.log('🚀 Starting Optimized Self-Instantiation Bootstrap\n'); try { // Phase 1: Kernel Bootstrap console.log('📦 Phase 1: Kernel Bootstrap'); await this.executeTransactionBootstrap(); // Phase 2: Dimensional Progression console.log('\n📈 Phase 2: Dimensional Progression'); await this.progressDimensions(); // Phase 3: Integration Activation console.log('\n🔌 Phase 3: Integration Activation'); await this.activateIntegration(); // Phase 4: Self-Reference Execution console.log('\n🔄 Phase 4: Self-Reference Execution'); await this.executeSelfReference(); console.log('\n✅ Bootstrap completed successfully!'); await this.printBootstrapSummary(); } catch (error) { console.error('\n❌ Bootstrap failed:', error.message); throw error; } } /** * Phase 1: Execute transaction bootstrap from kernel */ async executeTransactionBootstrap() { // Find transaction-bootstrap in kernel const bootstrapEntry = this.kernelObjects.find(obj => obj.id === 'transaction-bootstrap' && obj.type === 'transaction'); if (!bootstrapEntry) { throw new Error('transaction-bootstrap not found in kernel'); } const steps = bootstrapEntry.steps || []; console.log(` Found ${steps.length} bootstrap steps`); for (const step of steps) { await this.executeBootstrapStep(step); } } /** * Execute individual bootstrap step */ async executeBootstrapStep(step) { console.log(` → ${step}`); switch (step) { case 'begin': await this.beginTransaction(); break; case 'validate-shacl': await this.validateSHACL(); break; case 'load-automaton': await this.loadAutomaton(); break; case 'initialize-evaluator': await this.initializeEvaluator(); break; case 'execute-self-reference': // Deferred to Phase 4 break; case 'commit': await this.commitTransaction(); break; default: console.warn(` ⚠️ Unknown step: ${step}`); } } /** * Begin bootstrap transaction */ async beginTransaction() { if (!existsSync(this.kernelPath)) { throw new Error(`Kernel file not found: ${this.kernelPath}`); } // Use meta-log-db to load kernel await this.db.loadCanvas(this.kernelPath); const canvas = await this.db.parseJsonlCanvas(this.kernelPath); // Flatten canvas to get objects this.kernelObjects = []; if (canvas.nodes) this.kernelObjects.push(...canvas.nodes); if (canvas.edges) this.kernelObjects.push(...canvas.edges); for (const [key, value] of Object.entries(canvas)) { if (key !== 'nodes' && key !== 'edges' && Array.isArray(value)) { this.kernelObjects.push(...value); } } console.log(` ✅ Loaded ${this.kernelObjects.length} kernel objects`); } /** * Validate SHACL constraints */ async validateSHACL() { const shaclShapes = this.kernelObjects.filter(obj => obj.type === 'shacl' || obj['sh:path']); console.log(` ✅ Found ${shaclShapes.length} SHACL constraints`); // Validate automaton self-references const automata = this.kernelObjects.filter(obj => obj.type === 'automaton'); for (const automaton of automata) { if (!automaton.selfReference || !automaton.selfReference.file) { throw new Error(`Automaton ${automaton.id} missing selfReference`); } if (automaton.selfReference.file !== 'automaton-kernel.jsonl') { throw new Error(`Automaton ${automaton.id} has invalid selfReference file`); } } console.log(` ✅ Validated ${automata.length} automata`); } /** * Load automaton structure */ async loadAutomaton() { // Load or create automaton.jsonl if (existsSync(this.automatonPath)) { // Use meta-log-db to load automaton await this.db.loadCanvas(this.automatonPath); const canvas = await this.db.parseJsonlCanvas(this.automatonPath); // Flatten canvas to get objects this.automatonObjects = []; if (canvas.nodes) this.automatonObjects.push(...canvas.nodes); if (canvas.edges) this.automatonObjects.push(...canvas.edges); for (const [key, value] of Object.entries(canvas)) { if (key !== 'nodes' && key !== 'edges' && Array.isArray(value)) { this.automatonObjects.push(...value); } } console.log(` ✅ Loaded ${this.automatonObjects.length} automaton objects`); } else { // Initialize from kernel this.automatonObjects = [...this.kernelObjects]; this.saveAutomaton(); console.log(` ✅ Initialized automaton from kernel`); } } /** * Initialize Church encoding evaluator */ async initializeEvaluator() { // Verify Church encoding patterns exist const churchPatterns = [ 'λf.λx.x', // 0D 'λn.λf.λx.f(nfx)', // 1D 'λx.λy.λf.fxy', // 2D 'λm.λn.λf.λx.mf(nfx)' // 3D ]; // Check that kernel contains Church encodings const kernelText = JSON.stringify(this.kernelObjects); const foundPatterns = churchPatterns.filter(pattern => kernelText.includes(pattern)); console.log(` ✅ Found ${foundPatterns.length}/${churchPatterns.length} Church encoding patterns`); } /** * Commit transaction */ async commitTransaction() { // Ensure automaton is saved this.saveAutomaton(); console.log(` ✅ Transaction committed`); } /** * Phase 2: Progress through dimensions */ async progressDimensions() { for (const config of this.dimensionalPath) { await this.instantiateDimension(config); } } /** * Instantiate a specific dimension */ async instantiateDimension(config) { console.log(` → Instantiating ${config.dimension} (${config.operation})`); // Find automaton for this dimension const automaton = this.kernelObjects.find(obj => obj.type === 'automaton' && obj.dimensionalLevel === parseInt(config.dimension[0] || '0')); if (!automaton) { console.warn(` ⚠️ No automaton found for ${config.dimension}`); return; } // Verify self-reference points to correct kernel line if (automaton.selfReference?.line !== config.kernelLine) { console.warn(` ⚠️ Self-reference line mismatch for ${config.dimension}`); } // Verify Church encoding matches const systemObj = this.kernelObjects.find(obj => obj.id === `${config.dimension}-system`); if (systemObj && systemObj.text?.includes(config.church)) { console.log(` ✅ ${config.dimension} validated (Church: ${config.church})`); } else { console.warn(` ⚠️ Church encoding not found for ${config.dimension}`); } } /** * Phase 3: Integration activation (stub - OpenCode removed) */ async activateIntegration() { // OpenCode integration removed - all operations use meta-log-db console.log(' ✅ Using meta-log-db for all operations'); console.log(' ✅ Integration ready (meta-log-db)'); } /** * Phase 4: Execute self-reference */ async executeSelfReference() { // Create kernel self-reference const kernelSelfRef = this.kernelObjects.find(obj => obj.id === 'self-ref' && obj.type === 'file'); if (kernelSelfRef) { console.log(` ✅ Kernel self-reference: ${kernelSelfRef.file}`); } // Create automaton self-reference const automatonSelfRef = this.automatonObjects.find(obj => obj.id === 'self-ref' && obj.type === 'file'); if (!automatonSelfRef) { // Add self-reference to automaton const newSelfRef = { id: 'self-ref', type: 'file', x: 800, y: 0, width: 280, height: 120, color: '5', file: this.automatonPath }; this.automatonObjects.push(newSelfRef); this.saveAutomaton(); console.log(` ✅ Created automaton self-reference`); } else { console.log(` ✅ Automaton self-reference: ${automatonSelfRef.file}`); } // Link dimensional automata to kernel const automata = this.automatonObjects.filter(obj => obj.type === 'automaton'); for (const automaton of automata) { if (automaton.selfReference?.file === 'automaton-kernel.jsonl') { console.log(` ✅ ${automaton.id} linked to kernel:line ${automaton.selfReference.line}`); } } } /** * Save automaton to file */ saveAutomaton() { const jsonlContent = this.automatonObjects .map(obj => JSON.stringify(obj)) .join('\n') + '\n'; writeFileSync(this.automatonPath, jsonlContent); } /** * Print bootstrap summary */ async printBootstrapSummary() { console.log('\n📊 Bootstrap Summary:'); console.log(` Kernel objects: ${this.kernelObjects.length}`); console.log(` Automaton objects: ${this.automatonObjects.length}`); console.log(` Dimensions instantiated: ${this.dimensionalPath.length}`); console.log(` Integration: meta-log-db`); } } // CLI Interface if (require.main === module) { const bootstrap = new OptimizedBootstrap(); bootstrap.bootstrap() .then(() => { console.log('\n🎉 Bootstrap completed successfully!'); process.exit(0); }) .catch((error) => { console.error('\n❌ Bootstrap failed:', error); process.exit(1); }); } export { OptimizedBootstrap }; export default OptimizedBootstrap; //# sourceMappingURL=bootstrap-automaton.js.map