UNPKG

assemblyscript

Version:

A TypeScript-like language for WebAssembly.

1,267 lines (1,158 loc) 78 kB
// // Lookup data for exp2f // // @ts-ignore: decorator @inline const EXP2F_TABLE_BITS = 5; // @ts-ignore: decorator @lazy @inline const EXP2F_DATA_TAB = memory.data<u64>([ // exp2f_data_tab[i] = uint(2^(i/N)) - (i << 52-BITS) // used for computing 2^(k/N) for an int |k| < 150 N as // double(tab[k%N] + (k << 52-BITS)) 0x3FF0000000000000, 0x3FEFD9B0D3158574, 0x3FEFB5586CF9890F, 0x3FEF9301D0125B51, 0x3FEF72B83C7D517B, 0x3FEF54873168B9AA, 0x3FEF387A6E756238, 0x3FEF1E9DF51FDEE1, 0x3FEF06FE0A31B715, 0x3FEEF1A7373AA9CB, 0x3FEEDEA64C123422, 0x3FEECE086061892D, 0x3FEEBFDAD5362A27, 0x3FEEB42B569D4F82, 0x3FEEAB07DD485429, 0x3FEEA47EB03A5585, 0x3FEEA09E667F3BCD, 0x3FEE9F75E8EC5F74, 0x3FEEA11473EB0187, 0x3FEEA589994CCE13, 0x3FEEACE5422AA0DB, 0x3FEEB737B0CDC5E5, 0x3FEEC49182A3F090, 0x3FEED503B23E255D, 0x3FEEE89F995AD3AD, 0x3FEEFF76F2FB5E47, 0x3FEF199BDD85529C, 0x3FEF3720DCEF9069, 0x3FEF5818DCFBA487, 0x3FEF7C97337B9B5F, 0x3FEFA4AFA2A490DA, 0x3FEFD0765B6E4540 ]); // ULP error: 0.502 (nearest rounding.) // Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.) // Wrong count: 168353 (all nearest rounding wrong results with fma.) // @ts-ignore: decorator @inline export function exp2f_lut(x: f32): f32 { const N = 1 << EXP2F_TABLE_BITS, N_MASK = N - 1, shift = reinterpret<f64>(0x4338000000000000) / N, // 0x1.8p+52 Ox127f = reinterpret<f32>(0x7F000000); const C0 = reinterpret<f64>(0x3FAC6AF84B912394), // 0x1.c6af84b912394p-5 C1 = reinterpret<f64>(0x3FCEBFCE50FAC4F3), // 0x1.ebfce50fac4f3p-3 C2 = reinterpret<f64>(0x3FE62E42FF0C52D6); // 0x1.62e42ff0c52d6p-1 let xd = <f64>x; let ix = reinterpret<u32>(x); let ux = ix >> 20 & 0x7FF; if (ux >= 0x430) { // |x| >= 128 or x is nan. if (ix == 0xFF800000) return 0; // x == -Inf -> 0 if (ux >= 0x7F8) return x + x; // x == Inf/NaN -> Inf/NaN if (x > 0) return x * Ox127f; // x > 0 -> HugeVal (Owerflow) if (x <= -150) return 0; // x <= -150 -> 0 (Underflow) } // x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. let kd = xd + shift; let ki = reinterpret<u64>(kd); let r = xd - (kd - shift); let t: u64, y: f64, s: f64; // exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) t = load<u64>(EXP2F_DATA_TAB + ((<usize>ki & N_MASK) << alignof<u64>())); t += ki << (52 - EXP2F_TABLE_BITS); s = reinterpret<f64>(t); y = C2 * r + 1; y += (C0 * r + C1) * (r * r); y *= s; return <f32>y; } // ULP error: 0.502 (nearest rounding.) // Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.) // Wrong count: 170635 (all nearest rounding wrong results with fma.) // @ts-ignore: decorator @inline export function expf_lut(x: f32): f32 { const N = 1 << EXP2F_TABLE_BITS, N_MASK = N - 1, shift = reinterpret<f64>(0x4338000000000000), // 0x1.8p+52 InvLn2N = reinterpret<f64>(0x3FF71547652B82FE) * N, // 0x1.71547652b82fep+0 Ox1p127f = reinterpret<f32>(0x7F000000); const C0 = reinterpret<f64>(0x3FAC6AF84B912394) / N / N / N, // 0x1.c6af84b912394p-5 C1 = reinterpret<f64>(0x3FCEBFCE50FAC4F3) / N / N, // 0x1.ebfce50fac4f3p-3 C2 = reinterpret<f64>(0x3FE62E42FF0C52D6) / N; // 0x1.62e42ff0c52d6p-1 let xd = <f64>x; let ix = reinterpret<u32>(x); let ux = ix >> 20 & 0x7FF; if (ux >= 0x42B) { // |x| >= 88 or x is nan. if (ix == 0xFF800000) return 0; // x == -Inf -> 0 if (ux >= 0x7F8) return x + x; // x == Inf/NaN -> Inf/NaN if (x > reinterpret<f32>(0x42B17217)) return x * Ox1p127f; // x > log(0x1p128) ~= 88.72 -> HugeVal (Owerflow) if (x < reinterpret<f32>(0xC2CFF1B4)) return 0; // x < log(0x1p-150) ~= -103.97 -> 0 (Underflow) } // x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. let z = InvLn2N * xd; // Round and convert z to int, the result is in [-150*N, 128*N] and // ideally ties-to-even rule is used, otherwise the magnitude of r // can be bigger which gives larger approximation error. let kd = <f64>(z + shift); let ki = reinterpret<u64>(kd); let r = z - (kd - shift); let s: f64, y: f64, t: u64; // exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) t = load<u64>(EXP2F_DATA_TAB + ((<usize>ki & N_MASK) << alignof<u64>())); t += ki << (52 - EXP2F_TABLE_BITS); s = reinterpret<f64>(t); z = C0 * r + C1; y = C2 * r + 1; y += z * (r * r); y *= s; return <f32>y; } // // Lookup data for log2f // // @ts-ignore: decorator @inline const LOG2F_TABLE_BITS = 4; // @ts-ignore: decorator @lazy @inline const LOG2F_DATA_TAB = memory.data<u64>([ 0x3FF661EC79F8F3BE, 0xBFDEFEC65B963019, // 0x1.661ec79f8f3bep+0, -0x1.efec65b963019p-2, 0x3FF571ED4AAF883D, 0xBFDB0B6832D4FCA4, // 0x1.571ed4aaf883dp+0, -0x1.b0b6832d4fca4p-2, 0x3FF49539F0F010B0, 0xBFD7418B0A1FB77B, // 0x1.49539f0f010bp+0 , -0x1.7418b0a1fb77bp-2, 0x3FF3C995B0B80385, 0xBFD39DE91A6DCF7B, // 0x1.3c995b0b80385p+0, -0x1.39de91a6dcf7bp-2, 0x3FF30D190C8864A5, 0xBFD01D9BF3F2B631, // 0x1.30d190c8864a5p+0, -0x1.01d9bf3f2b631p-2, 0x3FF25E227B0B8EA0, 0xBFC97C1D1B3B7AF0, // 0x1.25e227b0b8eap+0 , -0x1.97c1d1b3b7afp-3 , 0x3FF1BB4A4A1A343F, 0xBFC2F9E393AF3C9F, // 0x1.1bb4a4a1a343fp+0, -0x1.2f9e393af3c9fp-3, 0x3FF12358F08AE5BA, 0xBFB960CBBF788D5C, // 0x1.12358f08ae5bap+0, -0x1.960cbbf788d5cp-4, 0x3FF0953F419900A7, 0xBFAA6F9DB6475FCE, // 0x1.0953f419900a7p+0, -0x1.a6f9db6475fcep-5, 0x3FF0000000000000, 0, // 0x1p+0, 0x0, 0x3FEE608CFD9A47AC, 0x3FB338CA9F24F53D, // 0x1.e608cfd9a47acp-1, 0x1.338ca9f24f53dp-4, 0x3FECA4B31F026AA0, 0x3FC476A9543891BA, // 0x1.ca4b31f026aap-1 , 0x1.476a9543891bap-3, 0x3FEB2036576AFCE6, 0x3FCE840B4AC4E4D2, // 0x1.b2036576afce6p-1, 0x1.e840b4ac4e4d2p-3, 0x3FE9C2D163A1AA2D, 0x3FD40645F0C6651C, // 0x1.9c2d163a1aa2dp-1, 0x1.40645f0c6651cp-2, 0x3FE886E6037841ED, 0x3FD88E9C2C1B9FF8, // 0x1.886e6037841edp-1, 0x1.88e9c2c1b9ff8p-2, 0x3FE767DCF5534862, 0x3FDCE0A44EB17BCC // 0x1.767dcf5534862p-1, 0x1.ce0a44eb17bccp-2 ]); // ULP error: 0.752 (nearest rounding.) // Relative error: 1.9 * 2^-26 (before rounding.) // @ts-ignore: decorator @inline export function log2f_lut(x: f32): f32 { const N_MASK = (1 << LOG2F_TABLE_BITS) - 1, Ox1p23f = reinterpret<f32>(0x4B000000); // 0x1p23f const A0 = reinterpret<f64>(0xBFD712B6F70A7E4D), // -0x1.712b6f70a7e4dp-2 A1 = reinterpret<f64>(0x3FDECABF496832E0), // 0x1.ecabf496832ep-2 A2 = reinterpret<f64>(0xBFE715479FFAE3DE), // -0x1.715479ffae3dep-1 A3 = reinterpret<f64>(0x3FF715475F35C8B8); // 0x1.715475f35c8b8p0 let ux = reinterpret<u32>(x); // Fix sign of zero with downward rounding when x==1. // if (WANT_ROUNDING && predict_false(ix == 0x3f800000)) return 0; if (ux - 0x00800000 >= 0x7F800000 - 0x00800000) { // x < 0x1p-126 or inf or nan. if (ux * 2 == 0) return -Infinity; if (ux == 0x7F800000) return x; // log2(inf) == inf. if ((ux >> 31) || ux * 2 >= 0xFF000000) return (x - x) / (x - x); // x is subnormal, normalize it. ux = reinterpret<u32>(x * Ox1p23f); ux -= 23 << 23; } // x = 2^k z; where z is in range [OFF,2*OFF] and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. let tmp = ux - 0x3F330000; let i = (tmp >> (23 - LOG2F_TABLE_BITS)) & N_MASK; let top = tmp & 0xFF800000; let iz = ux - top; let k = <i32>tmp >> 23; let invc = load<f64>(LOG2F_DATA_TAB + (i << (1 + alignof<f64>())), 0 << alignof<f64>()); let logc = load<f64>(LOG2F_DATA_TAB + (i << (1 + alignof<f64>())), 1 << alignof<f64>()); let z = <f64>reinterpret<f32>(iz); // log2(x) = log1p(z/c-1)/ln2 + log2(c) + k let r = z * invc - 1; let y0 = logc + <f64>k; // Pipelined polynomial evaluation to approximate log1p(r)/ln2. let y = A1 * r + A2; let p = A3 * r + y0; let r2 = r * r; y += A0 * r2; y = y * r2 + p; return <f32>y; } // // Lookup data for logf. See: https://git.musl-libc.org/cgit/musl/tree/src/math/logf.c // // @ts-ignore: decorator @inline const LOGF_TABLE_BITS = 4; // @ts-ignore: decorator @lazy @inline const LOGF_DATA_TAB = memory.data<u64>([ 0x3FF661EC79F8F3BE, 0xBFD57BF7808CAADE, // 0x1.661ec79f8f3bep+0, -0x1.57bf7808caadep-2, 0x3FF571ED4AAF883D, 0xBFD2BEF0A7C06DDB, // 0x1.571ed4aaf883dp+0, -0x1.2bef0a7c06ddbp-2, 0x3FF49539F0F010B0, 0xBFD01EAE7F513A67, // 0x1.49539f0f010bp+0 , -0x1.01eae7f513a67p-2, 0x3FF3C995B0B80385, 0xBFCB31D8A68224E9, // 0x1.3c995b0b80385p+0, -0x1.b31d8a68224e9p-3, 0x3FF30D190C8864A5, 0xBFC6574F0AC07758, // 0x1.30d190c8864a5p+0, -0x1.6574f0ac07758p-3, 0x3FF25E227B0B8EA0, 0xBFC1AA2BC79C8100, // 0x1.25e227b0b8eap+0 , -0x1.1aa2bc79c81p-3 , 0x3FF1BB4A4A1A343F, 0xBFBA4E76CE8C0E5E, // 0x1.1bb4a4a1a343fp+0, -0x1.a4e76ce8c0e5ep-4, 0x3FF12358F08AE5BA, 0xBFB1973C5A611CCC, // 0x1.12358f08ae5bap+0, -0x1.1973c5a611cccp-4, 0x3FF0953F419900A7, 0xBFA252F438E10C1E, // 0x1.0953f419900a7p+0, -0x1.252f438e10c1ep-5, 0x3FF0000000000000, 0, // 0x1p+0, 0, 0x3FEE608CFD9A47AC, 0x3FAAA5AA5DF25984, // 0x1.e608cfd9a47acp-1, 0x1.aa5aa5df25984p-5, 0x3FECA4B31F026AA0, 0x3FBC5E53AA362EB4, // 0x1.ca4b31f026aap-1 , 0x1.c5e53aa362eb4p-4, 0x3FEB2036576AFCE6, 0x3FC526E57720DB08, // 0x1.b2036576afce6p-1, 0x1.526e57720db08p-3, 0x3FE9C2D163A1AA2D, 0x3FCBC2860D224770, // 0x1.9c2d163a1aa2dp-1, 0x1.bc2860d22477p-3 , 0x3FE886E6037841ED, 0x3FD1058BC8A07EE1, // 0x1.886e6037841edp-1, 0x1.1058bc8a07ee1p-2, 0x3FE767DCF5534862, 0x3FD4043057B6EE09 // 0x1.767dcf5534862p-1, 0x1.4043057b6ee09p-2 ]); // ULP error: 0.818 (nearest rounding.) // Relative error: 1.957 * 2^-26 (before rounding.) // @ts-ignore: decorator @inline export function logf_lut(x: f32): f32 { const N_MASK = (1 << LOGF_TABLE_BITS) - 1, Ox1p23f = reinterpret<f32>(0x4B000000); // 0x1p23f const Ln2 = reinterpret<f64>(0x3FE62E42FEFA39EF), // 0x1.62e42fefa39efp-1; A0 = reinterpret<f64>(0xBFD00EA348B88334), // -0x1.00ea348b88334p-2 A1 = reinterpret<f64>(0x3FD5575B0BE00B6A), // 0x1.5575b0be00b6ap-2 A2 = reinterpret<f64>(0xBFDFFFFEF20A4123); // -0x1.ffffef20a4123p-2 let ux = reinterpret<u32>(x); // Fix sign of zero with downward rounding when x==1. // if (WANT_ROUNDING && ux == 0x3f800000) return 0; if (ux - 0x00800000 >= 0x7F800000 - 0x00800000) { // x < 0x1p-126 or inf or nan. if ((ux << 1) == 0) return -Infinity; if (ux == 0x7F800000) return x; // log(inf) == inf. if ((ux >> 31) || (ux << 1) >= 0xFF000000) return (x - x) / (x - x); // x is subnormal, normalize it. ux = reinterpret<u32>(x * Ox1p23f); ux -= 23 << 23; } // x = 2^k z; where z is in range [OFF,2*OFF] and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. let tmp = ux - 0x3F330000; let i = (tmp >> (23 - LOGF_TABLE_BITS)) & N_MASK; let k = <i32>tmp >> 23; let iz = ux - (tmp & 0x1FF << 23); let invc = load<f64>(LOGF_DATA_TAB + (i << (1 + alignof<f64>())), 0 << alignof<f64>()); let logc = load<f64>(LOGF_DATA_TAB + (i << (1 + alignof<f64>())), 1 << alignof<f64>()); let z = <f64>reinterpret<f32>(iz); // log(x) = log1p(z/c-1) + log(c) + k*Ln2 let r = z * invc - 1; let y0 = logc + <f64>k * Ln2; // Pipelined polynomial evaluation to approximate log1p(r). let r2 = r * r; let y = A1 * r + A2; y += A0 * r2; y = y * r2 + (y0 + r); return <f32>y; } // // Lookup data for powf. See: https://git.musl-libc.org/cgit/musl/tree/src/math/powf.c // // @ts-ignore: decorator @inline function zeroinfnanf(ux: u32): bool { return (ux << 1) - 1 >= (<u32>0x7f800000 << 1) - 1; } // Returns 0 if not int, 1 if odd int, 2 if even int. The argument is // the bit representation of a non-zero finite floating-point value. // @ts-ignore: decorator @inline function checkintf(iy: u32): i32 { let e = iy >> 23 & 0xFF; if (e < 0x7F ) return 0; if (e > 0x7F + 23) return 2; e = 1 << (0x7F + 23 - e); if (iy & (e - 1)) return 0; if (iy & e ) return 1; return 2; } // Subnormal input is normalized so ix has negative biased exponent. // Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. // @ts-ignore: decorator @inline function log2f_inline(ux: u32): f64 { const N_MASK = (1 << LOG2F_TABLE_BITS) - 1; const A0 = reinterpret<f64>(0x3FD27616C9496E0B), // 0x1.27616c9496e0bp-2 A1 = reinterpret<f64>(0xBFD71969A075C67A), // -0x1.71969a075c67ap-2 A2 = reinterpret<f64>(0x3FDEC70A6CA7BADD), // 0x1.ec70a6ca7baddp-2 A3 = reinterpret<f64>(0xBFE7154748BEF6C8), // -0x1.7154748bef6c8p-1 A4 = reinterpret<f64>(0x3FF71547652AB82B); // 0x1.71547652ab82bp+0 // x = 2^k z; where z is in range [OFF,2*OFF] and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. let tmp = ux - 0x3F330000; let i = usize((tmp >> (23 - LOG2F_TABLE_BITS)) & N_MASK); let top = tmp & 0xFF800000; let uz = ux - top; let k = <i32>top >> 23; let invc = load<f64>(LOG2F_DATA_TAB + (i << (1 + alignof<f64>())), 0 << alignof<f64>()); let logc = load<f64>(LOG2F_DATA_TAB + (i << (1 + alignof<f64>())), 1 << alignof<f64>()); let z = <f64>reinterpret<f32>(uz); // log2(x) = log1p(z/c-1)/ln2 + log2(c) + k let r = z * invc - 1; let y0 = logc + <f64>k; // Pipelined polynomial evaluation to approximate log1p(r)/ln2. let y = A0 * r + A1; let p = A2 * r + A3; let q = A4 * r + y0; r *= r; q += p * r; y = y * (r * r) + q; return y; } // The output of log2 and thus the input of exp2 is either scaled by N // (in case of fast toint intrinsics) or not. The unscaled xd must be // in [-1021,1023], sign_bias sets the sign of the result. // @ts-ignore: decorator @inline function exp2f_inline(xd: f64, signBias: u32): f32 { const N = 1 << EXP2F_TABLE_BITS, N_MASK = N - 1, shift = reinterpret<f64>(0x4338000000000000) / N; // 0x1.8p+52 const C0 = reinterpret<f64>(0x3FAC6AF84B912394), // 0x1.c6af84b912394p-5 C1 = reinterpret<f64>(0x3FCEBFCE50FAC4F3), // 0x1.ebfce50fac4f3p-3 C2 = reinterpret<f64>(0x3FE62E42FF0C52D6); // 0x1.62e42ff0c52d6p-1 // x = k/N + r with r in [-1/(2N), 1/(2N)] let kd = <f64>(xd + shift); let ki = reinterpret<u64>(kd); let r = xd - (kd - shift); let t: u64, z: f64, y: f64, s: f64; // exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) t = load<u64>(EXP2F_DATA_TAB + ((<usize>ki & N_MASK) << alignof<u64>())); t += (ki + signBias) << (52 - EXP2F_TABLE_BITS); s = reinterpret<f64>(t); z = C0 * r + C1; y = C2 * r + 1; y += z * (r * r); y *= s; return <f32>y; } // @ts-ignore: decorator @inline function xflowf(sign: u32, y: f32): f32 { return select<f32>(-y, y, sign) * y; } // @ts-ignore: decorator @inline function oflowf(sign: u32): f32 { return xflowf(sign, reinterpret<f32>(0x70000000)); // 0x1p97f } // @ts-ignore: decorator @inline function uflowf(sign: u32): f32 { return xflowf(sign, reinterpret<f32>(0x10000000)); // 0x1p-95f } // @ts-ignore: decorator @inline export function powf_lut(x: f32, y: f32): f32 { const Ox1p23f = reinterpret<f32>(0x4B000000), // 0x1p23f UPPER_LIMIT = reinterpret<f64>(0x405FFFFFFFD1D571), // 0x1.fffffffd1d571p+6 LOWER_LIMIT = -150.0, SIGN_BIAS = 1 << (EXP2F_TABLE_BITS + 11); let signBias: u32 = 0; let ix = reinterpret<u32>(x); let iy = reinterpret<u32>(y); let ny = 0; if (i32(ix - 0x00800000 >= 0x7f800000 - 0x00800000) | (ny = i32(zeroinfnanf(iy)))) { // Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). if (ny) { if ((iy << 1) == 0) return 1.0; if (ix == 0x3F800000) return NaN; // original: 1.0 if ((ix << 1) > (<u32>0x7F800000 << 1) || (iy << 1) > (<u32>0x7F800000 << 1)) return x + y; if ((ix << 1) == (0x3F800000 << 1)) return NaN; // original: 1.0 if (((ix << 1) < (0x3F800000 << 1)) == !(iy >> 31)) return 0; // |x| < 1 && y==inf or |x| > 1 && y==-inf. return y * y; } if (zeroinfnanf(ix)) { let x2 = x * x; if ((ix >> 31) && checkintf(iy) == 1) x2 = -x2; return <i32>iy < 0 ? 1 / x2 : x2; } // x and y are non-zero finite. if (<i32>ix < 0) { // Finite x < 0. let yint = checkintf(iy); if (yint == 0) return (x - x) / (x - x); if (yint == 1) signBias = SIGN_BIAS; ix &= 0x7FFFFFFF; } if (ix < 0x00800000) { // Normalize subnormal x so exponent becomes negative. ix = reinterpret<u32>(x * Ox1p23f); ix &= 0x7FFFFFFF; ix -= 23 << 23; } } let logx = log2f_inline(ix); let ylogx = y * logx; // cannot overflow, y is single prec. if ((reinterpret<u64>(ylogx) >> 47 & 0xFFFF) >= 0x80BF) { // reinterpret<u64>(126.0) >> 47 // |y * log(x)| >= 126 if (ylogx > UPPER_LIMIT) return oflowf(signBias); // overflow if (ylogx <= LOWER_LIMIT) return uflowf(signBias); // underflow } return exp2f_inline(ylogx, signBias); } // // Lookup data for exp. See: https://git.musl-libc.org/cgit/musl/tree/src/math/exp.c // // @ts-ignore: decorator @inline const EXP_TABLE_BITS = 7; // @ts-ignore: decorator @lazy @inline const EXP_DATA_TAB = memory.data<u64>([ 0x0000000000000000, 0x3FF0000000000000, 0x3C9B3B4F1A88BF6E, 0x3FEFF63DA9FB3335, 0xBC7160139CD8DC5D, 0x3FEFEC9A3E778061, 0xBC905E7A108766D1, 0x3FEFE315E86E7F85, 0x3C8CD2523567F613, 0x3FEFD9B0D3158574, 0xBC8BCE8023F98EFA, 0x3FEFD06B29DDF6DE, 0x3C60F74E61E6C861, 0x3FEFC74518759BC8, 0x3C90A3E45B33D399, 0x3FEFBE3ECAC6F383, 0x3C979AA65D837B6D, 0x3FEFB5586CF9890F, 0x3C8EB51A92FDEFFC, 0x3FEFAC922B7247F7, 0x3C3EBE3D702F9CD1, 0x3FEFA3EC32D3D1A2, 0xBC6A033489906E0B, 0x3FEF9B66AFFED31B, 0xBC9556522A2FBD0E, 0x3FEF9301D0125B51, 0xBC5080EF8C4EEA55, 0x3FEF8ABDC06C31CC, 0xBC91C923B9D5F416, 0x3FEF829AAEA92DE0, 0x3C80D3E3E95C55AF, 0x3FEF7A98C8A58E51, 0xBC801B15EAA59348, 0x3FEF72B83C7D517B, 0xBC8F1FF055DE323D, 0x3FEF6AF9388C8DEA, 0x3C8B898C3F1353BF, 0x3FEF635BEB6FCB75, 0xBC96D99C7611EB26, 0x3FEF5BE084045CD4, 0x3C9AECF73E3A2F60, 0x3FEF54873168B9AA, 0xBC8FE782CB86389D, 0x3FEF4D5022FCD91D, 0x3C8A6F4144A6C38D, 0x3FEF463B88628CD6, 0x3C807A05B0E4047D, 0x3FEF3F49917DDC96, 0x3C968EFDE3A8A894, 0x3FEF387A6E756238, 0x3C875E18F274487D, 0x3FEF31CE4FB2A63F, 0x3C80472B981FE7F2, 0x3FEF2B4565E27CDD, 0xBC96B87B3F71085E, 0x3FEF24DFE1F56381, 0x3C82F7E16D09AB31, 0x3FEF1E9DF51FDEE1, 0xBC3D219B1A6FBFFA, 0x3FEF187FD0DAD990, 0x3C8B3782720C0AB4, 0x3FEF1285A6E4030B, 0x3C6E149289CECB8F, 0x3FEF0CAFA93E2F56, 0x3C834D754DB0ABB6, 0x3FEF06FE0A31B715, 0x3C864201E2AC744C, 0x3FEF0170FC4CD831, 0x3C8FDD395DD3F84A, 0x3FEEFC08B26416FF, 0xBC86A3803B8E5B04, 0x3FEEF6C55F929FF1, 0xBC924AEDCC4B5068, 0x3FEEF1A7373AA9CB, 0xBC9907F81B512D8E, 0x3FEEECAE6D05D866, 0xBC71D1E83E9436D2, 0x3FEEE7DB34E59FF7, 0xBC991919B3CE1B15, 0x3FEEE32DC313A8E5, 0x3C859F48A72A4C6D, 0x3FEEDEA64C123422, 0xBC9312607A28698A, 0x3FEEDA4504AC801C, 0xBC58A78F4817895B, 0x3FEED60A21F72E2A, 0xBC7C2C9B67499A1B, 0x3FEED1F5D950A897, 0x3C4363ED60C2AC11, 0x3FEECE086061892D, 0x3C9666093B0664EF, 0x3FEECA41ED1D0057, 0x3C6ECCE1DAA10379, 0x3FEEC6A2B5C13CD0, 0x3C93FF8E3F0F1230, 0x3FEEC32AF0D7D3DE, 0x3C7690CEBB7AAFB0, 0x3FEEBFDAD5362A27, 0x3C931DBDEB54E077, 0x3FEEBCB299FDDD0D, 0xBC8F94340071A38E, 0x3FEEB9B2769D2CA7, 0xBC87DECCDC93A349, 0x3FEEB6DAA2CF6642, 0xBC78DEC6BD0F385F, 0x3FEEB42B569D4F82, 0xBC861246EC7B5CF6, 0x3FEEB1A4CA5D920F, 0x3C93350518FDD78E, 0x3FEEAF4736B527DA, 0x3C7B98B72F8A9B05, 0x3FEEAD12D497C7FD, 0x3C9063E1E21C5409, 0x3FEEAB07DD485429, 0x3C34C7855019C6EA, 0x3FEEA9268A5946B7, 0x3C9432E62B64C035, 0x3FEEA76F15AD2148, 0xBC8CE44A6199769F, 0x3FEEA5E1B976DC09, 0xBC8C33C53BEF4DA8, 0x3FEEA47EB03A5585, 0xBC845378892BE9AE, 0x3FEEA34634CCC320, 0xBC93CEDD78565858, 0x3FEEA23882552225, 0x3C5710AA807E1964, 0x3FEEA155D44CA973, 0xBC93B3EFBF5E2228, 0x3FEEA09E667F3BCD, 0xBC6A12AD8734B982, 0x3FEEA012750BDABF, 0xBC6367EFB86DA9EE, 0x3FEE9FB23C651A2F, 0xBC80DC3D54E08851, 0x3FEE9F7DF9519484, 0xBC781F647E5A3ECF, 0x3FEE9F75E8EC5F74, 0xBC86EE4AC08B7DB0, 0x3FEE9F9A48A58174, 0xBC8619321E55E68A, 0x3FEE9FEB564267C9, 0x3C909CCB5E09D4D3, 0x3FEEA0694FDE5D3F, 0xBC7B32DCB94DA51D, 0x3FEEA11473EB0187, 0x3C94ECFD5467C06B, 0x3FEEA1ED0130C132, 0x3C65EBE1ABD66C55, 0x3FEEA2F336CF4E62, 0xBC88A1C52FB3CF42, 0x3FEEA427543E1A12, 0xBC9369B6F13B3734, 0x3FEEA589994CCE13, 0xBC805E843A19FF1E, 0x3FEEA71A4623C7AD, 0xBC94D450D872576E, 0x3FEEA8D99B4492ED, 0x3C90AD675B0E8A00, 0x3FEEAAC7D98A6699, 0x3C8DB72FC1F0EAB4, 0x3FEEACE5422AA0DB, 0xBC65B6609CC5E7FF, 0x3FEEAF3216B5448C, 0x3C7BF68359F35F44, 0x3FEEB1AE99157736, 0xBC93091FA71E3D83, 0x3FEEB45B0B91FFC6, 0xBC5DA9B88B6C1E29, 0x3FEEB737B0CDC5E5, 0xBC6C23F97C90B959, 0x3FEEBA44CBC8520F, 0xBC92434322F4F9AA, 0x3FEEBD829FDE4E50, 0xBC85CA6CD7668E4B, 0x3FEEC0F170CA07BA, 0x3C71AFFC2B91CE27, 0x3FEEC49182A3F090, 0x3C6DD235E10A73BB, 0x3FEEC86319E32323, 0xBC87C50422622263, 0x3FEECC667B5DE565, 0x3C8B1C86E3E231D5, 0x3FEED09BEC4A2D33, 0xBC91BBD1D3BCBB15, 0x3FEED503B23E255D, 0x3C90CC319CEE31D2, 0x3FEED99E1330B358, 0x3C8469846E735AB3, 0x3FEEDE6B5579FDBF, 0xBC82DFCD978E9DB4, 0x3FEEE36BBFD3F37A, 0x3C8C1A7792CB3387, 0x3FEEE89F995AD3AD, 0xBC907B8F4AD1D9FA, 0x3FEEEE07298DB666, 0xBC55C3D956DCAEBA, 0x3FEEF3A2B84F15FB, 0xBC90A40E3DA6F640, 0x3FEEF9728DE5593A, 0xBC68D6F438AD9334, 0x3FEEFF76F2FB5E47, 0xBC91EEE26B588A35, 0x3FEF05B030A1064A, 0x3C74FFD70A5FDDCD, 0x3FEF0C1E904BC1D2, 0xBC91BDFBFA9298AC, 0x3FEF12C25BD71E09, 0x3C736EAE30AF0CB3, 0x3FEF199BDD85529C, 0x3C8EE3325C9FFD94, 0x3FEF20AB5FFFD07A, 0x3C84E08FD10959AC, 0x3FEF27F12E57D14B, 0x3C63CDAF384E1A67, 0x3FEF2F6D9406E7B5, 0x3C676B2C6C921968, 0x3FEF3720DCEF9069, 0xBC808A1883CCB5D2, 0x3FEF3F0B555DC3FA, 0xBC8FAD5D3FFFFA6F, 0x3FEF472D4A07897C, 0xBC900DAE3875A949, 0x3FEF4F87080D89F2, 0x3C74A385A63D07A7, 0x3FEF5818DCFBA487, 0xBC82919E2040220F, 0x3FEF60E316C98398, 0x3C8E5A50D5C192AC, 0x3FEF69E603DB3285, 0x3C843A59AC016B4B, 0x3FEF7321F301B460, 0xBC82D52107B43E1F, 0x3FEF7C97337B9B5F, 0xBC892AB93B470DC9, 0x3FEF864614F5A129, 0x3C74B604603A88D3, 0x3FEF902EE78B3FF6, 0x3C83C5EC519D7271, 0x3FEF9A51FBC74C83, 0xBC8FF7128FD391F0, 0x3FEFA4AFA2A490DA, 0xBC8DAE98E223747D, 0x3FEFAF482D8E67F1, 0x3C8EC3BC41AA2008, 0x3FEFBA1BEE615A27, 0x3C842B94C3A9EB32, 0x3FEFC52B376BBA97, 0x3C8A64A931D185EE, 0x3FEFD0765B6E4540, 0xBC8E37BAE43BE3ED, 0x3FEFDBFDAD9CBE14, 0x3C77893B4D91CD9D, 0x3FEFE7C1819E90D8, 0x3C5305C14160CC89, 0x3FEFF3C22B8F71F1 ]); // Handle cases that may overflow or underflow when computing the result that // is scale*(1+TMP) without intermediate rounding. The bit representation of // scale is in SBITS, however it has a computed exponent that may have // overflown into the sign bit so that needs to be adjusted before using it as // a double. (int32_t)KI is the k used in the argument reduction and exponent // adjustment of scale, positive k here means the result may overflow and // negative k means the result may underflow. // @ts-ignore: decorator @inline function specialcase(tmp: f64, sbits: u64, ki: u64): f64 { const Ox1p_1022 = reinterpret<f64>(0x0010000000000000), // 0x1p-1022 Ox1p1009 = reinterpret<f64>(0x7F00000000000000); // 0x1p1009 let scale: f64; if (!(ki & 0x80000000)) { // k > 0, the exponent of scale might have overflowed by <= 460. sbits -= u64(1009) << 52; scale = reinterpret<f64>(sbits); return Ox1p1009 * (scale + scale * tmp); // 0x1p1009 } // k < 0, need special care in the subnormal range. sbits += u64(1022) << 52; // Note: sbits is signed scale. scale = reinterpret<f64>(sbits); let y = scale + scale * tmp; if (abs(y) < 1.0) { // Round y to the right precision before scaling it into the subnormal // range to avoid double rounding that can cause 0.5+E/2 ulp error where // E is the worst-case ulp error outside the subnormal range. So this // is only useful if the goal is better than 1 ulp worst-case error. let one = copysign(1.0, y); let lo = scale - y + scale * tmp; let hi = one + y; lo = one - hi + y + lo; y = (hi + lo) - one; // Fix the sign of 0. if (y == 0.0) y = reinterpret<f64>(sbits & 0x8000000000000000); } return y * Ox1p_1022; } // @ts-ignore: decorator @inline export function exp_lut(x: f64): f64 { const N = 1 << EXP_TABLE_BITS, N_MASK = N - 1; const InvLn2N = reinterpret<f64>(0x3FF71547652B82FE) * N, // 0x1.71547652b82fep0 NegLn2hiN = reinterpret<f64>(0xBF762E42FEFA0000), // -0x1.62e42fefa0000p-8 NegLn2loN = reinterpret<f64>(0xBD0CF79ABC9E3B3A), // -0x1.cf79abc9e3b3ap-47 shift = reinterpret<f64>(0x4338000000000000); // 0x1.8p52; const C2 = reinterpret<f64>(0x3FDFFFFFFFFFFDBD), // __exp_data.poly[0] (0x1.ffffffffffdbdp-2) C3 = reinterpret<f64>(0x3FC555555555543C), // __exp_data.poly[1] (0x1.555555555543cp-3) C4 = reinterpret<f64>(0x3FA55555CF172B91), // __exp_data.poly[2] (0x1.55555cf172b91p-5) C5 = reinterpret<f64>(0x3F81111167A4D017); // __exp_data.poly[3] (0x1.1111167a4d017p-7) let ux = reinterpret<u64>(x); let abstop = u32(ux >> 52) & 0x7FF; if (abstop - 0x3C9 >= 0x03F) { if (abstop - 0x3C9 >= 0x80000000) return 1; if (abstop >= 0x409) { if (ux == 0xFFF0000000000000) return 0; if (abstop >= 0x7FF) { return 1.0 + x; } else { return select<f64>(0, Infinity, <i64>ux < 0); } } // Large x is special cased below. abstop = 0; } // exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)] // x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N] let z = InvLn2N * x; // #if TOINT_INTRINSICS // kd = roundtoint(z); // ki = converttoint(z); // #elif EXP_USE_TOINT_NARROW // // z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. // let kd = z + shift; // let ki = reinterpret<u64>(kd) >> 16; // let kd = <f64><i32>ki; // #else // z - kd is in [-1, 1] in non-nearest rounding modes. let kd = z + shift; let ki = reinterpret<u64>(kd); kd -= shift; // #endif let r = x + kd * NegLn2hiN + kd * NegLn2loN; // 2^(k/N) ~= scale * (1 + tail). let idx = usize((ki & N_MASK) << 1); let top = ki << (52 - EXP_TABLE_BITS); let tail = reinterpret<f64>(load<u64>(EXP_DATA_TAB + (idx << alignof<u64>()))); // T[idx] // This is only a valid scale when -1023*N < k < 1024*N let sbits = load<u64>(EXP_DATA_TAB + (idx << alignof<u64>()), 1 << alignof<u64>()) + top; // T[idx + 1] // exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). // Evaluation is optimized assuming superscalar pipelined execution. let r2 = r * r; // Without fma the worst case error is 0.25/N ulp larger. // Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. let tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); if (abstop == 0) return specialcase(tmp, sbits, ki); let scale = reinterpret<f64>(sbits); // Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there // is no spurious underflow here even without fma. return scale + scale * tmp; } // // Lookup data for exp2. See: https://git.musl-libc.org/cgit/musl/tree/src/math/exp2.c // // Handle cases that may overflow or underflow when computing the result that // is scale*(1+TMP) without intermediate rounding. The bit representation of // scale is in SBITS, however it has a computed exponent that may have // overflown into the sign bit so that needs to be adjusted before using it as // a double. (int32_t)KI is the k used in the argument reduction and exponent // adjustment of scale, positive k here means the result may overflow and // negative k means the result may underflow. // @ts-ignore: decorator @inline function specialcase2(tmp: f64, sbits: u64, ki: u64): f64 { const Ox1p_1022 = reinterpret<f64>(0x10000000000000); // 0x1p-1022 let scale: f64; if ((ki & 0x80000000) == 0) { // k > 0, the exponent of scale might have overflowed by 1 sbits -= u64(1) << 52; scale = reinterpret<f64>(sbits); return 2 * (scale * tmp + scale); } // k < 0, need special care in the subnormal range sbits += u64(1022) << 52; scale = reinterpret<f64>(sbits); let y = scale * tmp + scale; if (y < 1.0) { // Round y to the right precision before scaling it into the subnormal // range to avoid double rounding that can cause 0.5+E/2 ulp error where // E is the worst-case ulp error outside the subnormal range. So this // is only useful if the goal is better than 1 ulp worst-case error. let hi: f64, lo: f64; lo = scale - y + scale * tmp; hi = 1.0 + y; lo = 1.0 - hi + y + lo; y = (hi + lo) - 1.0; } return y * Ox1p_1022; } // @ts-ignore: decorator @inline export function exp2_lut(x: f64): f64 { const N = 1 << EXP_TABLE_BITS, N_MASK = N - 1, shift = reinterpret<f64>(0x4338000000000000) / N; // 0x1.8p52 const C1 = reinterpret<f64>(0x3FE62E42FEFA39EF), // 0x1.62e42fefa39efp-1 C2 = reinterpret<f64>(0x3FCEBFBDFF82C424), // 0x1.ebfbdff82c424p-3 C3 = reinterpret<f64>(0x3FAC6B08D70CF4B5), // 0x1.c6b08d70cf4b5p-5 C4 = reinterpret<f64>(0x3F83B2ABD24650CC), // 0x1.3b2abd24650ccp-7 C5 = reinterpret<f64>(0x3F55D7E09B4E3A84); // 0x1.5d7e09b4e3a84p-10 let ux = reinterpret<u64>(x); let abstop = u32(ux >> 52) & 0x7ff; if (abstop - 0x3C9 >= 0x03F) { if (abstop - 0x3C9 >= 0x80000000) return 1.0; if (abstop >= 0x409) { if (ux == 0xFFF0000000000000) return 0; if (abstop >= 0x7FF) return 1.0 + x; if (<i64>ux >= 0) return Infinity; else if (ux >= 0xC090CC0000000000) return 0; } if ((ux << 1) > 0x811A000000000000) abstop = 0; // Large x is special cased below. } // exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. // x = k/N + r, with int k and r in [-1/2N, 1/2N] let kd = x + shift; let ki = reinterpret<u64>(kd); kd -= shift; // k/N for int k let r = x - kd; // 2^(k/N) ~= scale * (1 + tail) let idx = usize((ki & N_MASK) << 1); let top = ki << (52 - EXP_TABLE_BITS); let tail = reinterpret<f64>(load<u64>(EXP_DATA_TAB + (idx << alignof<u64>()), 0 << alignof<u64>())); // T[idx]) // This is only a valid scale when -1023*N < k < 1024*N let sbits = load<u64>(EXP_DATA_TAB + (idx << alignof<u64>()), 1 << alignof<u64>()) + top; // T[idx + 1] // exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). // Evaluation is optimized assuming superscalar pipelined execution let r2 = r * r; // Without fma the worst case error is 0.5/N ulp larger. // Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. let tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); if (abstop == 0) return specialcase2(tmp, sbits, ki); let scale = reinterpret<f64>(sbits); // Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there // is no spurious underflow here even without fma. return scale * tmp + scale; } // // Lookup data for log2. See: https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c // // @ts-ignore: decorator @inline const LOG2_TABLE_BITS = 6; /* Algorithm: x = 2^k z log2(x) = k + log2(c) + log2(z/c) log2(z/c) = poly(z/c - 1) where z is in [1.6p-1; 1.6p0] which is split into N subintervals and z falls into the ith one, then table entries are computed as tab[i].invc = 1/c tab[i].logc = (double)log2(c) tab2[i].chi = (double)c tab2[i].clo = (double)(c - (double)c) where c is near the center of the subinterval and is chosen by trying +-2^29 floating point invc candidates around 1/center and selecting one for which 1) the rounding error in 0x1.8p10 + logc is 0, 2) the rounding error in z - chi - clo is < 0x1p-64 and 3) the rounding error in (double)log2(c) is minimized (< 0x1p-68). Note: 1) ensures that k + logc can be computed without rounding error, 2) ensures that z/c - 1 can be computed as (z - chi - clo)*invc with close to a single rounding error when there is no fast fma for z*invc - 1, 3) ensures that logc + poly(z/c - 1) has small error, however near x == 1 when |log2(x)| < 0x1p-4, this is not enough so that is special cased. */ // @ts-ignore: decorator @lazy @inline const LOG2_DATA_TAB1 = memory.data<u64>([ // invc , logc 0x3FF724286BB1ACF8, 0xBFE1095FEECDB000, 0x3FF6E1F766D2CCA1, 0xBFE08494BD76D000, 0x3FF6A13D0E30D48A, 0xBFE00143AEE8F800, 0x3FF661EC32D06C85, 0xBFDEFEC5360B4000, 0x3FF623FA951198F8, 0xBFDDFDD91AB7E000, 0x3FF5E75BA4CF026C, 0xBFDCFFAE0CC79000, 0x3FF5AC055A214FB8, 0xBFDC043811FDA000, 0x3FF571ED0F166E1E, 0xBFDB0B67323AE000, 0x3FF53909590BF835, 0xBFDA152F5A2DB000, 0x3FF5014FED61ADDD, 0xBFD9217F5AF86000, 0x3FF4CAB88E487BD0, 0xBFD8304DB0719000, 0x3FF49539B4334FEE, 0xBFD74189F9A9E000, 0x3FF460CBDFAFD569, 0xBFD6552BB5199000, 0x3FF42D664EE4B953, 0xBFD56B23A29B1000, 0x3FF3FB01111DD8A6, 0xBFD483650F5FA000, 0x3FF3C995B70C5836, 0xBFD39DE937F6A000, 0x3FF3991C4AB6FD4A, 0xBFD2BAA1538D6000, 0x3FF3698E0CE099B5, 0xBFD1D98340CA4000, 0x3FF33AE48213E7B2, 0xBFD0FA853A40E000, 0x3FF30D191985BDB1, 0xBFD01D9C32E73000, 0x3FF2E025CAB271D7, 0xBFCE857DA2FA6000, 0x3FF2B404CF13CD82, 0xBFCCD3C8633D8000, 0x3FF288B02C7CCB50, 0xBFCB26034C14A000, 0x3FF25E2263944DE5, 0xBFC97C1C2F4FE000, 0x3FF234563D8615B1, 0xBFC7D6023F800000, 0x3FF20B46E33EAF38, 0xBFC633A71A05E000, 0x3FF1E2EEFDCDA3DD, 0xBFC494F5E9570000, 0x3FF1BB4A580B3930, 0xBFC2F9E424E0A000, 0x3FF19453847F2200, 0xBFC162595AFDC000, 0x3FF16E06C0D5D73C, 0xBFBF9C9A75BD8000, 0x3FF1485F47B7E4C2, 0xBFBC7B575BF9C000, 0x3FF12358AD0085D1, 0xBFB960C60FF48000, 0x3FF0FEF00F532227, 0xBFB64CE247B60000, 0x3FF0DB2077D03A8F, 0xBFB33F78B2014000, 0x3FF0B7E6D65980D9, 0xBFB0387D1A42C000, 0x3FF0953EFE7B408D, 0xBFAA6F9208B50000, 0x3FF07325CAC53B83, 0xBFA47A954F770000, 0x3FF05197E40D1B5C, 0xBF9D23A8C50C0000, 0x3FF03091C1208EA2, 0xBF916A2629780000, 0x3FF0101025B37E21, 0xBF7720F8D8E80000, 0x3FEFC07EF9CAA76B, 0x3F86FE53B1500000, 0x3FEF4465D3F6F184, 0x3FA11CCCE10F8000, 0x3FEECC079F84107F, 0x3FAC4DFC8C8B8000, 0x3FEE573A99975AE8, 0x3FB3AA321E574000, 0x3FEDE5D6F0BD3DE6, 0x3FB918A0D08B8000, 0x3FED77B681FF38B3, 0x3FBE72E9DA044000, 0x3FED0CB5724DE943, 0x3FC1DCD2507F6000, 0x3FECA4B2DC0E7563, 0x3FC476AB03DEA000, 0x3FEC3F8EE8D6CB51, 0x3FC7074377E22000, 0x3FEBDD2B4F020C4C, 0x3FC98EDE8BA94000, 0x3FEB7D6C006015CA, 0x3FCC0DB86AD2E000, 0x3FEB20366E2E338F, 0x3FCE840AAFCEE000, 0x3FEAC57026295039, 0x3FD0790AB4678000, 0x3FEA6D01BC2731DD, 0x3FD1AC056801C000, 0x3FEA16D3BC3FF18B, 0x3FD2DB11D4FEE000, 0x3FE9C2D14967FEAD, 0x3FD406464EC58000, 0x3FE970E4F47C9902, 0x3FD52DBE093AF000, 0x3FE920FB3982BCF2, 0x3FD651902050D000, 0x3FE8D30187F759F1, 0x3FD771D2CDEAF000, 0x3FE886E5EBB9F66D, 0x3FD88E9C857D9000, 0x3FE83C97B658B994, 0x3FD9A80155E16000, 0x3FE7F405FFC61022, 0x3FDABE186ED3D000, 0x3FE7AD22181415CA, 0x3FDBD0F2AEA0E000, 0x3FE767DCF99EFF8C, 0x3FDCE0A43DBF4000 ]); // @ts-ignore: decorator @lazy @inline const LOG2_DATA_TAB2 = memory.data<u64>([ // chi , clo 0x3FE6200012B90A8E, 0x3C8904AB0644B605, 0x3FE66000045734A6, 0x3C61FF9BEA62F7A9, 0x3FE69FFFC325F2C5, 0x3C827ECFCB3C90BA, 0x3FE6E00038B95A04, 0x3C88FF8856739326, 0x3FE71FFFE09994E3, 0x3C8AFD40275F82B1, 0x3FE7600015590E10, 0xBC72FD75B4238341, 0x3FE7A00012655BD5, 0x3C7808E67C242B76, 0x3FE7E0003259E9A6, 0xBC6208E426F622B7, 0x3FE81FFFEDB4B2D2, 0xBC8402461EA5C92F, 0x3FE860002DFAFCC3, 0x3C6DF7F4A2F29A1F, 0x3FE89FFFF78C6B50, 0xBC8E0453094995FD, 0x3FE8E00039671566, 0xBC8A04F3BEC77B45, 0x3FE91FFFE2BF1745, 0xBC77FA34400E203C, 0x3FE95FFFCC5C9FD1, 0xBC76FF8005A0695D, 0x3FE9A0003BBA4767, 0x3C70F8C4C4EC7E03, 0x3FE9DFFFE7B92DA5, 0x3C8E7FD9478C4602, 0x3FEA1FFFD72EFDAF, 0xBC6A0C554DCDAE7E, 0x3FEA5FFFDE04FF95, 0x3C867DA98CE9B26B, 0x3FEA9FFFCA5E8D2B, 0xBC8284C9B54C13DE, 0x3FEADFFFDDAD03EA, 0x3C5812C8EA602E3C, 0x3FEB1FFFF10D3D4D, 0xBC8EFADDAD27789C, 0x3FEB5FFFCE21165A, 0x3C53CB1719C61237, 0x3FEB9FFFD950E674, 0x3C73F7D94194CE00, 0x3FEBE000139CA8AF, 0x3C750AC4215D9BC0, 0x3FEC20005B46DF99, 0x3C6BEEA653E9C1C9, 0x3FEC600040B9F7AE, 0xBC7C079F274A70D6, 0x3FECA0006255FD8A, 0xBC7A0B4076E84C1F, 0x3FECDFFFD94C095D, 0x3C88F933F99AB5D7, 0x3FED1FFFF975D6CF, 0xBC582C08665FE1BE, 0x3FED5FFFA2561C93, 0xBC7B04289BD295F3, 0x3FED9FFF9D228B0C, 0x3C870251340FA236, 0x3FEDE00065BC7E16, 0xBC75011E16A4D80C, 0x3FEE200002F64791, 0x3C89802F09EF62E0, 0x3FEE600057D7A6D8, 0xBC7E0B75580CF7FA, 0x3FEEA00027EDC00C, 0xBC8C848309459811, 0x3FEEE0006CF5CB7C, 0xBC8F8027951576F4, 0x3FEF2000782B7DCC, 0xBC8F81D97274538F, 0x3FEF6000260C450A, 0xBC4071002727FFDC, 0x3FEF9FFFE88CD533, 0xBC581BDCE1FDA8B0, 0x3FEFDFFFD50F8689, 0x3C87F91ACB918E6E, 0x3FF0200004292367, 0x3C9B7FF365324681, 0x3FF05FFFE3E3D668, 0x3C86FA08DDAE957B, 0x3FF0A0000A85A757, 0xBC57E2DE80D3FB91, 0x3FF0E0001A5F3FCC, 0xBC91823305C5F014, 0x3FF11FFFF8AFBAF5, 0xBC8BFABB6680BAC2, 0x3FF15FFFE54D91AD, 0xBC9D7F121737E7EF, 0x3FF1A00011AC36E1, 0x3C9C000A0516F5FF, 0x3FF1E00019C84248, 0xBC9082FBE4DA5DA0, 0x3FF220000FFE5E6E, 0xBC88FDD04C9CFB43, 0x3FF26000269FD891, 0x3C8CFE2A7994D182, 0x3FF2A00029A6E6DA, 0xBC700273715E8BC5, 0x3FF2DFFFE0293E39, 0x3C9B7C39DAB2A6F9, 0x3FF31FFFF7DCF082, 0x3C7DF1336EDC5254, 0x3FF35FFFF05A8B60, 0xBC9E03564CCD31EB, 0x3FF3A0002E0EAECC, 0x3C75F0E74BD3A477, 0x3FF3E000043BB236, 0x3C9C7DCB149D8833, 0x3FF4200002D187FF, 0x3C7E08AFCF2D3D28, 0x3FF460000D387CB1, 0x3C820837856599A6, 0x3FF4A00004569F89, 0xBC89FA5C904FBCD2, 0x3FF4E000043543F3, 0xBC781125ED175329, 0x3FF51FFFCC027F0F, 0x3C9883D8847754DC, 0x3FF55FFFFD87B36F, 0xBC8709E731D02807, 0x3FF59FFFF21DF7BA, 0x3C87F79F68727B02, 0x3FF5DFFFEBFC3481, 0xBC9180902E30E93E ]); // @ts-ignore: decorator @inline export function log2_lut(x: f64): f64 { const N_MASK = (1 << LOG2_TABLE_BITS) - 1; const LO: u64 = 0x3FEEA4AF00000000, // reinterpret<u64>(1.0 - 0x1.5b51p-5) HI: u64 = 0x3FF0B55900000000; // reinterpret<u64>(1.0 + 0x1.6ab2p-5) const InvLn2hi = reinterpret<f64>(0x3FF7154765200000), // 0x1.7154765200000p+0 InvLn2lo = reinterpret<f64>(0x3DE705FC2EEFA200), // 0x1.705fc2eefa200p-33 Ox1p52 = reinterpret<f64>(0x4330000000000000); // 0x1p52 const B0 = reinterpret<f64>(0xBFE71547652B82FE), // -0x1.71547652b82fep-1 B1 = reinterpret<f64>(0x3FDEC709DC3A03F7), // 0x1.ec709dc3a03f7p-2 B2 = reinterpret<f64>(0xBFD71547652B7C3F), // -0x1.71547652b7c3fp-2 B3 = reinterpret<f64>(0x3FD2776C50F05BE4), // 0x1.2776c50f05be4p-2 B4 = reinterpret<f64>(0xBFCEC709DD768FE5), // -0x1.ec709dd768fe5p-3 B5 = reinterpret<f64>(0x3FCA61761EC4E736), // 0x1.a61761ec4e736p-3 B6 = reinterpret<f64>(0xBFC7153FBC64A79B), // -0x1.7153fbc64a79bp-3 B7 = reinterpret<f64>(0x3FC484D154F01B4A), // 0x1.484d154f01b4ap-3 B8 = reinterpret<f64>(0xBFC289E4A72C383C), // -0x1.289e4a72c383cp-3 B9 = reinterpret<f64>(0x3FC0B32F285AEE66); // 0x1.0b32f285aee66p-3 const A0 = reinterpret<f64>(0xBFE71547652B8339), // -0x1.71547652b8339p-1 A1 = reinterpret<f64>(0x3FDEC709DC3A04BE), // 0x1.ec709dc3a04bep-2 A2 = reinterpret<f64>(0xBFD7154764702FFB), // -0x1.7154764702ffbp-2 A3 = reinterpret<f64>(0x3FD2776C50034C48), // 0x1.2776c50034c48p-2 A4 = reinterpret<f64>(0xBFCEC7B328EA92BC), // -0x1.ec7b328ea92bcp-3 A5 = reinterpret<f64>(0x3FCA6225E117F92E); // 0x1.a6225e117f92ep-3 let ix = reinterpret<u64>(x); if (ix - LO < HI - LO) { let r = x - 1.0; // #if __FP_FAST_FMA // hi = r * InvLn2hi; // lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi); // #else let rhi = reinterpret<f64>(reinterpret<u64>(r) & 0xFFFFFFFF00000000); let rlo = r - rhi; let hi = rhi * InvLn2hi; let lo = rlo * InvLn2hi + r * InvLn2lo; // #endif let r2 = r * r; // rounding error: 0x1p-62 let r4 = r2 * r2; // Worst-case error is less than 0.54 ULP (0.55 ULP without fma) let p = r2 * (B0 + r * B1); let y = hi + p; lo += hi - y + p; lo += r4 * (B2 + r * B3 + r2 * (B4 + r * B5) + r4 * (B6 + r * B7 + r2 * (B8 + r * B9))); return y + lo; } let top = u32(ix >> 48); if (top - 0x0010 >= 0x7ff0 - 0x0010) { // x < 0x1p-1022 or inf or nan. if ((ix << 1) == 0) return -1.0 / (x * x); if (ix == 0x7FF0000000000000) return x; // log(inf) == inf if ((top & 0x8000) || (top & 0x7FF0) == 0x7FF0) return (x - x) / (x - x); // x is subnormal, normalize it. ix = reinterpret<u64>(x * Ox1p52); ix -= u64(52) << 52; } // x = 2^k z; where z is in range [OFF,2*OFF) and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. let tmp = ix - 0x3FE6000000000000; let i = <usize>((tmp >> (52 - LOG2_TABLE_BITS)) & N_MASK); let k = <i64>tmp >> 52; let iz = ix - (tmp & 0xFFF0000000000000); let invc = load<f64>(LOG2_DATA_TAB1 + (i << (1 + alignof<f64>())), 0 << alignof<f64>()); // T[i].invc; let logc = load<f64>(LOG2_DATA_TAB1 + (i << (1 + alignof<f64>())), 1 << alignof<f64>()); // T[i].logc; let z = reinterpret<f64>(iz); let kd = <f64>k; // log2(x) = log2(z/c) + log2(c) + k. // r ~= z/c - 1, |r| < 1/(2*N). // #if __FP_FAST_FMA // // rounding error: 0x1p-55/N. // r = __builtin_fma(z, invc, -1.0); // t1 = r * InvLn2hi; // t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1); // #else // rounding error: 0x1p-55/N + 0x1p-65. let chi = load<f64>(LOG2_DATA_TAB2 + (i << (1 + alignof<f64>())), 0 << alignof<f64>()); // T[i].chi; let clo = load<f64>(LOG2_DATA_TAB2 + (i << (1 + alignof<f64>())), 1 << alignof<f64>()); // T[i].clo; let r = (z - chi - clo) * invc; let rhi = reinterpret<f64>(reinterpret<u64>(r) & 0xFFFFFFFF00000000); let rlo = r - rhi; let t1 = rhi * InvLn2hi; let t2 = rlo * InvLn2hi + r * InvLn2lo; // #endif // hi + lo = r/ln2 + log2(c) + k let t3 = kd + logc; let hi = t3 + t1; let lo = t3 - hi + t1 + t2; // log2(r+1) = r/ln2 + r^2*poly(r) // Evaluation is optimized assuming superscalar pipelined execution let r2 = r * r; // rounding error: 0x1p-54/N^2 // Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). // ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). let p = A0 + r * A1 + r2 * (A2 + r * A3) + (r2 * r2) * (A4 + r * A5); return lo + r2 * p + hi; } // // Lookup data for log. See: https://git.musl-libc.org/cgit/musl/tree/src/math/log.c // // @ts-ignore: decorator @inline const LOG_TABLE_BITS = 7; /* Algorithm: x = 2^k z log(x) = k ln2 + log(c) + log(z/c) log(z/c) = poly(z/c - 1) where z is in [1.6p-1; 1.6p0] which is split into N subintervals and z falls into the ith one, then table entries are computed as tab[i].invc = 1/c tab[i].logc = (double)log(c) tab2[i].chi = (double)c tab2[i].clo = (double)(c - (double)c) where c is near the center of the subinterval and is chosen by trying +-2^29 floating point invc candidates around 1/center and selecting one for which 1) the rounding error in 0x1.8p9 + logc is 0, 2) the rounding error in z - chi - clo is < 0x1p-66 and 3) the rounding error in (double)log(c) is minimized (< 0x1p-66). Note: 1) ensures that k*ln2hi + logc can be computed without rounding error, 2) ensures that z/c - 1 can be computed as (z - chi - clo)*invc with close to a single rounding error when there is no fast fma for z*invc - 1, 3) ensures that logc + poly(z/c - 1) has small error, however near x == 1 when |log(x)| < 0x1p-4, this is not enough so that is special cased.*/ // @ts-ignore: decorator @lazy @inline const LOG_DATA_TAB1 = memory.data<u64>([ // invc , logc 0x3FF734F0C3E0DE9F, 0xBFD7CC7F79E69000, 0x3FF713786A2CE91F, 0xBFD76FEEC20D0000, 0x3FF6F26008FAB5A0, 0xBFD713E31351E000, 0x3FF6D1A61F138C7D, 0xBFD6B85B38287800, 0x3FF6B1490BC5B4D1, 0xBFD65D5590807800, 0x3FF69147332F0CBA, 0xBFD602D076180000, 0x3FF6719F18224223, 0xBFD5A8CA86909000, 0x3FF6524F99A51ED9, 0xBFD54F4356035000, 0x3FF63356AA8F24C4, 0xBFD4F637C36B4000, 0x3FF614B36B9DDC14, 0xBFD49DA7FDA85000, 0x3FF5F66452C65C4C, 0xBFD445923989A800, 0x3FF5D867B5912C4F, 0xBFD3EDF439B0B800, 0x3FF5BABCCB5B90DE, 0xBFD396CE448F7000, 0x3FF59D61F2D91A78, 0xBFD3401E17BDA000, 0x3FF5805612465687, 0xBFD2E9E2EF468000, 0x3FF56397CEE76BD3, 0xBFD2941B3830E000, 0x3FF54725E2A77F93, 0xBFD23EC58CDA8800, 0x3FF52AFF42064583, 0xBFD1E9E129279000, 0x3FF50F22DBB2BDDF, 0xBFD1956D2B48F800, 0x3FF4F38F4734DED7, 0xBFD141679AB9F800, 0x3FF4D843CFDE2840, 0xBFD0EDD094EF9800, 0x3FF4BD3EC078A3C8, 0xBFD09AA518DB1000, 0x3FF4A27FC3E0258A, 0xBFD047E65263B800, 0x3FF4880524D48434, 0xBFCFEB224586F000, 0x3FF46DCE1B192D0B, 0xBFCF474A7517B000, 0x3FF453D9D3391854, 0xBFCEA4443D103000, 0x3FF43A2744B4845A, 0xBFCE020D44E9B000, 0x3FF420B54115F8FB, 0xBFCD60A22977F000, 0x3FF40782DA3EF4B1, 0xBFCCC00104959000, 0x3FF3EE8F5D57FE8F, 0xBFCC202956891000, 0x3FF3D5D9A00B4CE9, 0xBFCB81178D811000, 0x3FF3BD60C010C12B, 0xBFCAE2C9CCD3D000, 0x3FF3A5242B75DAB8, 0xBFCA45402E129000, 0x3FF38D22CD9FD002, 0xBFC9A877681DF000, 0x3FF3755BC5847A1C, 0xBFC90C6D69483000, 0x3FF35DCE49AD36E2, 0xBFC87120A645C000, 0x3FF34679984DD440, 0xBFC7D68FB4143000, 0x3FF32F5CCEFFCB24, 0xBFC73CB83C627000, 0x3FF3187775A10D49, 0xBFC6A39A9B376000, 0x3FF301C8373E3990, 0xBFC60B3154B7A000, 0x3FF2EB4EBB95F841, 0xBFC5737D76243000, 0x3FF2D50A0219A9D1, 0xBFC4DC7B8FC23000, 0x3FF2BEF9A8B7FD2A, 0xBFC4462C51D20000, 0x3FF2A91C7A0C1BAB, 0xBFC3B08ABC830000, 0x3FF293726014B530, 0xBFC31B996B490000, 0x3FF27DFA5757A1F5, 0xBFC2875490A44000, 0x3FF268B39B1D3BBF, 0xBFC1F3B9F879A000, 0x3FF2539D838FF5BD, 0xBFC160C8252CA000, 0x3FF23EB7AAC9083B, 0xBFC0CE7F57F72000, 0x3FF22A012BA940B6, 0xBFC03CDC49FEA000, 0x3FF2157996CC4132, 0xBFBF57BDBC4B8000, 0x3FF201201DD2FC9B, 0xBFBE370896404000, 0x3FF1ECF4494D480B, 0xBFBD17983EF94000, 0x3FF1D8F5528F6569, 0xBFBBF9674ED8A000, 0x3FF1C52311577E7C, 0xBFBADC79202F6000, 0x3FF1B17C74CB26E9, 0xBFB9C0C3E7288000, 0x3FF19E010C2C1AB6, 0xBFB8A646B372C000, 0x3FF18AB07BB670BD, 0xBFB78D01B3AC0000, 0x3FF1778A25EFBCB6, 0xBFB674F145380000, 0x3FF1648D354C31DA, 0xBFB55E0E6D878000, 0x3FF151B990275FDD, 0xBFB4485CDEA1E000, 0x3FF13F0EA432D24C, 0xBFB333D94D6AA000, 0x3FF12C8B7210F9DA, 0xBFB22079F8C56000, 0x3FF11A3028ECB531, 0xBFB10E4698622000, 0x3FF107FBDA8434AF, 0xBFAFFA6C6AD20000, 0x3FF0F5EE0F4E6BB3, 0xBFADDA8D4A774000, 0x3FF0E4065D2A9FCE, 0xBFABBCECE4850000, 0x3FF0D244632CA521, 0xBFA9A1894012C000, 0x3FF0C0A77CE2981A, 0xBFA788583302C000, 0x3FF0AF2F83C636D1, 0xBFA5715E67D68000, 0x3FF09DDB98A01339, 0xBFA35C8A49658000, 0x3FF08CABAF52E7DF, 0xBFA149E364154000, 0x3FF07B9F2F4E28FB, 0xBF9E72C082EB8000, 0x3FF06AB58C358F19, 0xBF9A55F152528000, 0x3FF059EEA5ECF92C, 0xBF963D62CF818000, 0x3FF04949CDD12C90, 0xBF9228FB8CAA0000, 0x3FF038C6C6F0ADA9, 0xBF8C317B20F90000, 0x3FF02865137932A9, 0xBF8419355DAA0000, 0x3FF0182427EA7348, 0xBF781203C2EC0000, 0x3FF008040614B195, 0xBF60040979240000, 0x3FEFE01FF726FA1A, 0x3F6FEFF384900000, 0x3FEFA11CC261EA74, 0x3F87DC41353D0000, 0x3FEF6310B081992E, 0x3F93CEA3C4C28000, 0x3FEF25F63CEEADCD, 0x3F9B9FC114890000, 0x3FEEE9C8039113E7, 0x3FA1B0D8CE110000, 0x3FEEAE8078CBB1AB, 0x3FA58A5BD001C000, 0x3FEE741AA29D0C9B, 0x3FA95C8340D88000, 0x3FEE3A91830A99B5, 0x3FAD276AEF578000, 0x3FEE01E009609A56, 0x3FB07598E598C000, 0x3FEDCA01E577BB98, 0x3FB253F5E30D2000, 0x3FED92F20B7C9103, 0x3FB42EDD8B380000, 0x3FED5CAC66FB5CCE, 0x3FB606598757C000, 0x3FED272CAA5EDE9D, 0x3FB7DA76356A0000, 0x3FECF26E3E6B2CCD, 0x3FB9AB434E1C6000, 0x3FECBE6DA2A77902, 0x3FBB78C7BB0D6000, 0x3FEC8B266D37086D, 0x3FBD431332E72000, 0x3FEC5894BD5D5804, 0x3FBF0A3171DE6000, 0x3FEC26B533BB9F8C, 0x3FC067152B914000, 0x3FEBF583EEECE73F, 0x3FC147858292B000, 0x3FEBC4FD75DB96C1, 0x3FC2266ECDCA3000, 0x3FEB951E0C864A28, 0x3FC303D7A6C55000, 0x3FEB65E2C5EF3E2C, 0x3FC3DFC33C331000, 0x3FEB374867C9888B, 0x3FC4BA366B7A8000, 0x3FEB094B211D304A, 0x3FC5933928D1F000, 0x3FEADBE885F2EF7E, 0x3FC66ACD2418F000, 0x3FEAAF1D31603DA2, 0x3FC740F8EC669000, 0x3FEA82E63FD358A7, 0x3FC815C0F51AF000, 0x3FEA5740EF09738B, 0x3FC8E92954F68000, 0x3FEA2C2A90AB4B27, 0x3FC9BB3602F84000, 0x3FEA01A01393F2D1, 0x3FCA8BED1C2C0000, 0x3FE9D79F24DB3C1B, 0x3FCB5B515C01D000, 0x3FE9AE2505C7B190, 0x3FCC2967CCBCC000, 0x3FE9852EF297CE2F, 0x3FCCF635D5486000, 0x3FE95CBAEEA44B75, 0x3FCDC1BD3446C000, 0x3FE934C69DE74838, 0x3FCE8C01B8CFE000, 0x3FE90D4F2F6752E6, 0x3FCF5509C0179000, 0x3FE8E6528EFFD79D, 0x3FD00E6C121FB800, 0x3FE8BFCE9FCC007C, 0x3FD071B80E93D000, 0x3FE899C0DABEC30E, 0x3FD0D46B9E867000, 0x3FE87427AA2317FB, 0x3FD13687334BD000, 0x3FE84F00ACB39A08, 0x3FD1980D67234800, 0x3FE82A49E8653E55, 0x3FD1F8FFE0CC8000, 0x3FE8060195F40260, 0x3FD2595FD7636800, 0x3FE7E22563E0A329, 0x3FD2B9300914A800, 0x3FE7BEB377DCB5AD, 0x3FD3187210436000, 0x3FE79BAA679725C2, 0x3FD377266DEC1800, 0x3FE77907F2170657, 0x3FD3D54FFBAF3000, 0x3FE756CADBD6130C, 0x3FD432EEE32FE000 ]); // @ts-ignore: decorator @lazy @inline const LOG_DATA_TAB2 = memory.data<u64>([ // chi , clo 0x3FE61000014FB66B, 0x3C7E026C91425B3C, 0x3FE63000034DB495, 0x3C8DBFEA48005D41, 0x3FE650000D94D478, 0x3C8E7FA786D6A5B7, 0x3FE67000074E6FAD, 0x3C61FCEA6B54254C, 0x3FE68FFFFEDF0FAE, 0xBC7C7E274C590EFD, 0x3FE6B0000763C5BC, 0xBC8AC16848DCDA01, 0x3FE6D0001E5CC1F6, 0x3C833F1C9D499311, 0x3FE6EFFFEB05F63E, 0xBC7E80041AE22D53, 0x3FE710000E869780, 0x3C7BFF6671097952, 0x3FE72FFFFC67E912, 0x3C8C00E226BD8724, 0x3FE74FFFDF81116A, 0xBC6E02916EF101D2, 0x3FE770000F679C90, 0xBC67FC71CD549