UNPKG

assemblyscript

Version:

A TypeScript-like language for WebAssembly.

1,390 lines (1,284 loc) 106 kB
import { Math as JSMath } from "./bindings/dom"; export { JSMath }; import { pow_lut, exp_lut, exp2_lut, log_lut, log2_lut, powf_lut, expf_lut, exp2f_lut, logf_lut, log2f_lut } from "./util/math"; import { abs as builtin_abs, ceil as builtin_ceil, clz as builtin_clz, copysign as builtin_copysign, floor as builtin_floor, max as builtin_max, min as builtin_min, sqrt as builtin_sqrt, trunc as builtin_trunc } from "./builtins"; // SUN COPYRIGHT NOTICE // // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this software // is freely granted, provided that this notice is preserved. // // Applies to all functions marked with a comment referring here. /** @internal */ // @ts-ignore: decorator @lazy let rempio2_y0: f64, rempio2_y1: f64, res128_hi: u64; /** @internal */ // @ts-ignore: decorator @lazy @inline const PIO2_TABLE = memory.data<u64>([ 0x00000000A2F9836E, 0x4E441529FC2757D1, 0xF534DDC0DB629599, 0x3C439041FE5163AB, 0xDEBBC561B7246E3A, 0x424DD2E006492EEA, 0x09D1921CFE1DEB1C, 0xB129A73EE88235F5, 0x2EBB4484E99C7026, 0xB45F7E413991D639, 0x835339F49C845F8B, 0xBDF9283B1FF897FF, 0xDE05980FEF2F118B, 0x5A0A6D1F6D367ECF, 0x27CB09B74F463F66, 0x9E5FEA2D7527BAC7, 0xEBE5F17B3D0739F7, 0x8A5292EA6BFB5FB1, 0x1F8D5D0856033046, 0xFC7B6BABF0CFBC20, 0x9AF4361DA9E39161, 0x5EE61B086599855F, 0x14A068408DFFD880, 0x4D73273106061557 ]); /** @internal */ function R(z: f64): f64 { // Rational approximation of (asin(x)-x)/x^3 const // see: musl/src/math/asin.c and SUN COPYRIGHT NOTICE above pS0 = reinterpret<f64>(0x3FC5555555555555), // 1.66666666666666657415e-01 pS1 = reinterpret<f64>(0xBFD4D61203EB6F7D), // -3.25565818622400915405e-01 pS2 = reinterpret<f64>(0x3FC9C1550E884455), // 2.01212532134862925881e-01 pS3 = reinterpret<f64>(0xBFA48228B5688F3B), // -4.00555345006794114027e-02 pS4 = reinterpret<f64>(0x3F49EFE07501B288), // 7.91534994289814532176e-04 pS5 = reinterpret<f64>(0x3F023DE10DFDF709), // 3.47933107596021167570e-05 qS1 = reinterpret<f64>(0xC0033A271C8A2D4B), // -2.40339491173441421878e+00 qS2 = reinterpret<f64>(0x40002AE59C598AC8), // 2.02094576023350569471e+00 qS3 = reinterpret<f64>(0xBFE6066C1B8D0159), // -6.88283971605453293030e-01 qS4 = reinterpret<f64>(0x3FB3B8C5B12E9282); // 7.70381505559019352791e-02 let p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); let q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); return p / q; } /** @internal */ // @ts-ignore: decorator @inline function expo2(x: f64, sign: f64): f64 { // exp(x)/2 for x >= log(DBL_MAX) const // see: musl/src/math/__expo2.c k = <u32>2043, kln2 = reinterpret<f64>(0x40962066151ADD8B); // 0x1.62066151add8bp+10 let scale = reinterpret<f64>(<u64>((<u32>0x3FF + k / 2) << 20) << 32); // in directed rounding correct sign before rounding or overflow is important return NativeMath.exp(x - kln2) * (sign * scale) * scale; } /** @internal */ /* Helper function to eventually get bits of π/2 * |x| * * y = π/4 * (frac << clz(frac) >> 11) * return clz(frac) * * Right shift 11 bits to make upper half fit in `double` */ // @ts-ignore: decorator @inline function pio2_right(q0: u64, q1: u64): u64 { // see: jdh8/metallic/blob/master/src/math/double/rem_pio2.c // Bits of π/4 const p0: u64 = 0xC4C6628B80DC1CD1; const p1: u64 = 0xC90FDAA22168C234; const Ox1p_64 = reinterpret<f64>(0x3BF0000000000000); // 0x1p-64 const Ox1p_75 = reinterpret<f64>(0x3B40000000000000); // 0x1p-75 let shift = clz(q1); q1 = q1 << shift | q0 >> (64 - shift); q0 <<= shift; let lo = umuldi(p1, q1); let hi = res128_hi; let ahi = hi >> 11; let alo = lo >> 11 | hi << 53; let blo = <u64>(Ox1p_75 * <f64>p0 * <f64>q1 + Ox1p_75 * <f64>p1 * <f64>q0); rempio2_y0 = <f64>(ahi + u64(lo < blo)); rempio2_y1 = Ox1p_64 * <f64>(alo + blo); return shift; } /** @internal */ // @ts-ignore: decorator @inline function umuldi(u: u64, v: u64): u64 { let u1: u64 , v1: u64, w0: u64, w1: u64, t: u64; u1 = u & 0xFFFFFFFF; v1 = v & 0xFFFFFFFF; u >>= 32; v >>= 32; t = u1 * v1; w0 = t & 0xFFFFFFFF; t = u * v1 + (t >> 32); w1 = t >> 32; t = u1 * v + (t & 0xFFFFFFFF); res128_hi = u * v + w1 + (t >> 32); return (t << 32) + w0; } /** @internal */ function pio2_large_quot(x: f64, u: i64): i32 { // see: jdh8/metallic/blob/master/src/math/double/rem_pio2.c let magnitude = u & 0x7FFFFFFFFFFFFFFF; let offset = (magnitude >> 52) - 1045; let shift = offset & 63; let tblPtr = PIO2_TABLE + (<i32>(offset >> 6) << 3); let s0: u64, s1: u64, s2: u64; let b0 = load<u64>(tblPtr, 0 << 3); let b1 = load<u64>(tblPtr, 1 << 3); let b2 = load<u64>(tblPtr, 2 << 3); // Get 192 bits of 0x1p-31 / π with `offset` bits skipped if (shift) { let rshift = 64 - shift; let b3 = load<u64>(tblPtr, 3 << 3); s0 = b1 >> rshift | b0 << shift; s1 = b2 >> rshift | b1 << shift; s2 = b3 >> rshift | b2 << shift; } else { s0 = b0; s1 = b1; s2 = b2; } let significand = (u & 0x000FFFFFFFFFFFFF) | 0x0010000000000000; // First 128 bits of fractional part of x/(2π) let blo = umuldi(s1, significand); let bhi = res128_hi; let ahi = s0 * significand; let clo = (s2 >> 32) * (significand >> 32); let plo = blo + clo; let phi = ahi + bhi + u64(plo < clo); // r: u128 = p << 2 let rlo = plo << 2; let rhi = phi << 2 | plo >> 62; // s: i128 = r >> 127 let slo = <i64>rhi >> 63; let shi = slo >> 1; let q = (<i64>phi >> 62) - slo; let shifter = 0x3CB0000000000000 - (pio2_right(rlo ^ slo, rhi ^ shi) << 52); let signbit = (u ^ rhi) & 0x8000000000000000; let coeff = reinterpret<f64>(shifter | signbit); rempio2_y0 *= coeff; rempio2_y1 *= coeff; return <i32>q; } /** @internal */ // @ts-ignore: decorator @inline function rempio2(x: f64, u: u64, sign: i32): i32 { const pio2_1 = reinterpret<f64>(0x3FF921FB54400000), // 1.57079632673412561417e+00 pio2_1t = reinterpret<f64>(0x3DD0B4611A626331), // 6.07710050650619224932e-11 pio2_2 = reinterpret<f64>(0x3DD0B4611A600000), // 6.07710050630396597660e-11 pio2_2t = reinterpret<f64>(0x3BA3198A2E037073), // 2.02226624879595063154e-21 pio2_3 = reinterpret<f64>(0x3BA3198A2E000000), // 2.02226624871116645580e-21 pio2_3t = reinterpret<f64>(0x397B839A252049C1), // 8.47842766036889956997e-32 invpio2 = reinterpret<f64>(0x3FE45F306DC9C883); // 0.63661977236758134308 let ix = <u32>(u >> 32) & 0x7FFFFFFF; if (ASC_SHRINK_LEVEL < 1) { if (ix < 0x4002D97C) { // |x| < 3pi/4, special case with n=+-1 let q = 1, z: f64, y0: f64, y1: f64; if (!sign) { z = x - pio2_1; if (ix != 0x3FF921FB) { // 33+53 bit pi is good enough y0 = z - pio2_1t; y1 = (z - y0) - pio2_1t; } else { // near pi/2, use 33+33+53 bit pi z -= pio2_2; y0 = z - pio2_2t; y1 = (z - y0) - pio2_2t; } } else { // negative x z = x + pio2_1; if (ix != 0x3FF921FB) { // 33+53 bit pi is good enough y0 = z + pio2_1t; y1 = (z - y0) + pio2_1t; } else { // near pi/2, use 33+33+53 bit pi z += pio2_2; y0 = z + pio2_2t; y1 = (z - y0) + pio2_2t; } q = -1; } rempio2_y0 = y0; rempio2_y1 = y1; return q; } } if (ix < 0x413921FB) { // |x| ~< 2^20*pi/2 (1647099) // Use precise Cody Waite scheme let q = nearest(x * invpio2); let r = x - q * pio2_1; let w = q * pio2_1t; // 1st round good to 85 bit let j = ix >> 20; let y0 = r - w; let hi = <u32>(reinterpret<u64>(y0) >> 32); let i = j - ((hi >> 20) & 0x7FF); if (i > 16) { // 2nd iteration needed, good to 118 let t = r; w = q * pio2_2; r = t - w; w = q * pio2_2t - ((t - r) - w); y0 = r - w; hi = <u32>(reinterpret<u64>(y0) >> 32); i = j - ((hi >> 20) & 0x7FF); if (i > 49) { // 3rd iteration need, 151 bits acc let t = r; w = q * pio2_3; r = t - w; w = q * pio2_3t - ((t - r) - w); y0 = r - w; } } let y1 = (r - y0) - w; rempio2_y0 = y0; rempio2_y1 = y1; return <i32>q; } let q = pio2_large_quot(x, u); return select(-q, q, sign); } /** @internal */ // @ts-ignore: decorator @inline function sin_kern(x: f64, y: f64, iy: i32): f64 { // see: musl/tree/src/math/__sin.c const S1 = reinterpret<f64>(0xBFC5555555555549), // -1.66666666666666324348e-01 S2 = reinterpret<f64>(0x3F8111111110F8A6), // 8.33333333332248946124e-03 S3 = reinterpret<f64>(0xBF2A01A019C161D5), // -1.98412698298579493134e-04 S4 = reinterpret<f64>(0x3EC71DE357B1FE7D), // 2.75573137070700676789e-06 S5 = reinterpret<f64>(0xBE5AE5E68A2B9CEB), // -2.50507602534068634195e-08 S6 = reinterpret<f64>(0x3DE5D93A5ACFD57C); // 1.58969099521155010221e-10 let z = x * x; let w = z * z; let r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6); let v = z * x; if (!iy) { return x + v * (S1 + z * r); } else { return x - ((z * (0.5 * y - v * r) - y) - v * S1); } } /** @internal */ // @ts-ignore: decorator @inline function cos_kern(x: f64, y: f64): f64 { // see: musl/tree/src/math/__cos.c const C1 = reinterpret<f64>(0x3FA555555555554C), // 4.16666666666666019037e-02 C2 = reinterpret<f64>(0xBF56C16C16C15177), // -1.38888888888741095749e-03 C3 = reinterpret<f64>(0x3EFA01A019CB1590), // 2.48015872894767294178e-05 C4 = reinterpret<f64>(0xBE927E4F809C52AD), // -2.75573143513906633035e-07 C5 = reinterpret<f64>(0x3E21EE9EBDB4B1C4), // 2.08757232129817482790e-09 C6 = reinterpret<f64>(0xBDA8FAE9BE8838D4); // -1.13596475577881948265e-11 let z = x * x; let w = z * z; let r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6)); let hz = 0.5 * z; w = 1.0 - hz; return w + (((1.0 - w) - hz) + (z * r - x * y)); } /** @internal */ function tan_kern(x: f64, y: f64, iy: i32): f64 { // see: src/lib/msun/src/k_tan.c const T0 = reinterpret<f64>(0x3FD5555555555563), // 3.33333333333334091986e-01 T1 = reinterpret<f64>(0x3FC111111110FE7A), // 1.33333333333201242699e-01 T2 = reinterpret<f64>(0x3FABA1BA1BB341FE), // 5.39682539762260521377e-02 T3 = reinterpret<f64>(0x3F9664F48406D637), // 2.18694882948595424599e-02 T4 = reinterpret<f64>(0x3F8226E3E96E8493), // 8.86323982359930005737e-03 T5 = reinterpret<f64>(0x3F6D6D22C9560328), // 3.59207910759131235356e-03 T6 = reinterpret<f64>(0x3F57DBC8FEE08315), // 1.45620945432529025516e-03 T7 = reinterpret<f64>(0x3F4344D8F2F26501), // 5.88041240820264096874e-04 T8 = reinterpret<f64>(0x3F3026F71A8D1068), // 2.46463134818469906812e-04 T9 = reinterpret<f64>(0x3F147E88A03792A6), // 7.81794442939557092300e-05 T10 = reinterpret<f64>(0x3F12B80F32F0A7E9), // 7.14072491382608190305e-05 T11 = reinterpret<f64>(0xBEF375CBDB605373), // -1.85586374855275456654e-05 T12 = reinterpret<f64>(0x3EFB2A7074BF7AD4); // 2.59073051863633712884e-05 const one = reinterpret<f64>(0x3FF0000000000000), // 1.00000000000000000000e+00 pio4 = reinterpret<f64>(0x3FE921FB54442D18), // 7.85398163397448278999e-01 pio4lo = reinterpret<f64>(0x3C81A62633145C07); // 3.06161699786838301793e-17 let z: f64, r: f64, v: f64, w: f64, s: f64; let hx = <i32>(reinterpret<u64>(x) >> 32); // high word of x let ix = hx & 0x7FFFFFFF; // high word of |x| let big = ix >= 0x3FE59428; if (big) { // |x| >= 0.6744 if (hx < 0) { x = -x, y = -y; } z = pio4 - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; w = z * z; r = T1 + w * (T3 + w * (T5 + w * (T7 + w * (T9 + w * T11)))); v = z * (T2 + w * (T4 + w * (T6 + w * (T8 + w * (T10 + w * T12))))); s = z * x; r = y + z * (s * (r + v) + y); r += T0 * s; w = x + r; if (big) { v = iy; return (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r))); } if (iy == 1) return w; let a: f64, t: f64; z = w; z = reinterpret<f64>(reinterpret<u64>(z) & 0xFFFFFFFF00000000); v = r - (z - x); // z + v = r + x t = a = -one / w; // a = -1.0 / w t = reinterpret<f64>(reinterpret<u64>(t) & 0xFFFFFFFF00000000); s = one + t * z; return t + a * (s + t * v); } /** @internal */ function dtoi32(x: f64): i32 { if (ASC_SHRINK_LEVEL > 0) { const inv32 = 1.0 / 4294967296; return <i32><i64>(x - 4294967296 * floor(x * inv32)); } else { let result = 0; let u = reinterpret<u64>(x); let e = (u >> 52) & 0x7FF; if (e <= 1023 + 30) { result = <i32>x; } else if (e <= 1023 + 30 + 53) { let v = (u & ((<u64>1 << 52) - 1)) | (<u64>1 << 52); v = v << e - 1023 - 52 + 32; result = <i32>(v >> 32); result = select<i32>(-result, result, <i64>u < 0); } return result; } } // @ts-ignore: decorator @lazy let random_seeded = false; // @ts-ignore: decorator @lazy let random_state0_64: u64, random_state1_64: u64; // @ts-ignore: decorator @lazy let random_state0_32: u32, random_state1_32: u32; function murmurHash3(h: u64): u64 { // Force all bits of a hash block to avalanche h ^= h >> 33; // see: https://github.com/aappleby/smhasher h *= 0xFF51AFD7ED558CCD; h ^= h >> 33; h *= 0xC4CEB9FE1A85EC53; h ^= h >> 33; return h; } function splitMix32(h: u32): u32 { h += 0x6D2B79F5; h = (h ^ (h >> 15)) * (h | 1); h ^= h + (h ^ (h >> 7)) * (h | 61); return h ^ (h >> 14); } export namespace NativeMath { // @ts-ignore: decorator @lazy export const E = reinterpret<f64>(0x4005BF0A8B145769); // 2.7182818284590452354 // @ts-ignore: decorator @lazy export const LN2 = reinterpret<f64>(0x3FE62E42FEFA39EF); // 0.69314718055994530942 // @ts-ignore: decorator @lazy export const LN10 = reinterpret<f64>(0x40026BB1BBB55516); // 2.30258509299404568402 // @ts-ignore: decorator @lazy export const LOG2E = reinterpret<f64>(0x3FF71547652B82FE); // 1.4426950408889634074 // @ts-ignore: decorator @lazy export const LOG10E = reinterpret<f64>(0x3FDBCB7B1526E50E); // 0.43429448190325182765 // @ts-ignore: decorator @lazy export const PI = reinterpret<f64>(0x400921FB54442D18); // 3.14159265358979323846 // @ts-ignore: decorator @lazy export const SQRT1_2 = reinterpret<f64>(0x3FE6A09E667F3BCD); // 0.70710678118654752440 // @ts-ignore: decorator @lazy export const SQRT2 = reinterpret<f64>(0x3FF6A09E667F3BCD); // 1.41421356237309504880 // @ts-ignore: decorator @lazy export let sincos_sin: f64 = 0; // @ts-ignore: decorator @lazy export let sincos_cos: f64 = 0; // @ts-ignore: decorator @inline export function abs(x: f64): f64 { return builtin_abs<f64>(x); } export function acos(x: f64): f64 { // see: musl/src/math/acos.c and SUN COPYRIGHT NOTICE above const pio2_hi = reinterpret<f64>(0x3FF921FB54442D18), // 1.57079632679489655800e+00 pio2_lo = reinterpret<f64>(0x3C91A62633145C07), // 6.12323399573676603587e-17 Ox1p_120f = reinterpret<f32>(0x03800000); let hx = <u32>(reinterpret<u64>(x) >> 32); let ix = hx & 0x7FFFFFFF; if (ix >= 0x3FF00000) { let lx = <u32>reinterpret<u64>(x); if ((ix - 0x3FF00000 | lx) == 0) { if (<i32>hx < 0) return 2 * pio2_hi + Ox1p_120f; return 0; } return 0 / (x - x); } if (ix < 0x3FE00000) { if (ix <= 0x3C600000) return pio2_hi + Ox1p_120f; return pio2_hi - (x - (pio2_lo - x * R(x * x))); } let s: f64, w: f64, z: f64; if (<i32>hx < 0) { // z = (1.0 + x) * 0.5; z = 0.5 + x * 0.5; s = builtin_sqrt<f64>(z); w = R(z) * s - pio2_lo; return 2 * (pio2_hi - (s + w)); } // z = (1.0 - x) * 0.5; z = 0.5 - x * 0.5; s = builtin_sqrt<f64>(z); let df = reinterpret<f64>(reinterpret<u64>(s) & 0xFFFFFFFF00000000); let c = (z - df * df) / (s + df); w = R(z) * s + c; return 2 * (df + w); } export function acosh(x: f64): f64 { // see: musl/src/math/acosh.c const s = reinterpret<f64>(0x3FE62E42FEFA39EF); let u = reinterpret<u64>(x); // Prevent propagation for all input values less than 1.0. // Note musl lib didn't fix this yet. if (<i64>u < 0x3FF0000000000000) return (x - x) / 0.0; let e = u >> 52 & 0x7FF; if (e < 0x3FF + 1) return log1p(x - 1 + builtin_sqrt<f64>((x - 1) * (x - 1) + 2 * (x - 1))); if (e < 0x3FF + 26) return log(2 * x - 1 / (x + builtin_sqrt<f64>(x * x - 1))); return log(x) + s; } export function asin(x: f64): f64 { // see: musl/src/math/asin.c and SUN COPYRIGHT NOTICE above const pio2_hi = reinterpret<f64>(0x3FF921FB54442D18), // 1.57079632679489655800e+00 pio2_lo = reinterpret<f64>(0x3C91A62633145C07), // 6.12323399573676603587e-17 Ox1p_120f = reinterpret<f32>(0x03800000); let hx = <u32>(reinterpret<u64>(x) >> 32); let ix = hx & 0x7FFFFFFF; if (ix >= 0x3FF00000) { let lx = <u32>reinterpret<u64>(x); if ((ix - 0x3FF00000 | lx) == 0) return x * pio2_hi + Ox1p_120f; return 0 / (x - x); } if (ix < 0x3FE00000) { if (ix < 0x3E500000 && ix >= 0x00100000) return x; return x + x * R(x * x); } // let z = (1.0 - builtin_abs<f64>(x)) * 0.5; let z = 0.5 - builtin_abs<f64>(x) * 0.5; let s = builtin_sqrt<f64>(z); let r = R(z); if (ix >= 0x3FEF3333) x = pio2_hi - (2 * (s + s * r) - pio2_lo); else { let f = reinterpret<f64>(reinterpret<u64>(s) & 0xFFFFFFFF00000000); let c = (z - f * f) / (s + f); x = 0.5 * pio2_hi - (2 * s * r - (pio2_lo - 2 * c) - (0.5 * pio2_hi - 2 * f)); } return select(-x, x, <i32>hx < 0); } export function asinh(x: f64): f64 { // see: musl/src/math/asinh.c const c = reinterpret<f64>(0x3FE62E42FEFA39EF); // 0.693147180559945309417232121458176568 let u = reinterpret<u64>(x); let e = u >> 52 & 0x7FF; let y = reinterpret<f64>(u & 0x7FFFFFFFFFFFFFFF); if (e >= 0x3FF + 26) y = log(y) + c; else if (e >= 0x3FF + 1) y = log(2 * y + 1 / (builtin_sqrt<f64>(y * y + 1) + y)); else if (e >= 0x3FF - 26) y = log1p(y + y * y / (builtin_sqrt<f64>(y * y + 1) + 1)); return builtin_copysign(y, x); } export function atan(x: f64): f64 { // see musl/src/math/atan.c and SUN COPYRIGHT NOTICE above const atanhi0 = reinterpret<f64>(0x3FDDAC670561BB4F), // 4.63647609000806093515e-01 atanhi1 = reinterpret<f64>(0x3FE921FB54442D18), // 7.85398163397448278999e-01 atanhi2 = reinterpret<f64>(0x3FEF730BD281F69B), // 9.82793723247329054082e-01 atanhi3 = reinterpret<f64>(0x3FF921FB54442D18), // 1.57079632679489655800e+00 atanlo0 = reinterpret<f64>(0x3C7A2B7F222F65E2), // 2.26987774529616870924e-17 atanlo1 = reinterpret<f64>(0x3C81A62633145C07), // 3.06161699786838301793e-17 atanlo2 = reinterpret<f64>(0x3C7007887AF0CBBD), // 1.39033110312309984516e-17 atanlo3 = reinterpret<f64>(0x3C91A62633145C07), // 6.12323399573676603587e-17 aT0 = reinterpret<f64>(0x3FD555555555550D), // 3.33333333333329318027e-01 aT1 = reinterpret<f64>(0xBFC999999998EBC4), // -1.99999999998764832476e-01 aT2 = reinterpret<f64>(0x3FC24924920083FF), // 1.42857142725034663711e-01 aT3 = reinterpret<f64>(0xBFBC71C6FE231671), // -1.11111104054623557880e-01, aT4 = reinterpret<f64>(0x3FB745CDC54C206E), // 9.09088713343650656196e-02 aT5 = reinterpret<f64>(0xBFB3B0F2AF749A6D), // -7.69187620504482999495e-02 aT6 = reinterpret<f64>(0x3FB10D66A0D03D51), // 6.66107313738753120669e-02 aT7 = reinterpret<f64>(0xBFADDE2D52DEFD9A), // -5.83357013379057348645e-02 aT8 = reinterpret<f64>(0x3FA97B4B24760DEB), // 4.97687799461593236017e-02 aT9 = reinterpret<f64>(0xBFA2B4442C6A6C2F), // -3.65315727442169155270e-02 aT10 = reinterpret<f64>(0x3F90AD3AE322DA11), // 1.62858201153657823623e-02 Ox1p_120f = reinterpret<f32>(0x03800000); let ix = <u32>(reinterpret<u64>(x) >> 32); let sx = x; ix &= 0x7FFFFFFF; let z: f64; if (ix >= 0x44100000) { if (isNaN(x)) return x; z = atanhi3 + Ox1p_120f; return builtin_copysign<f64>(z, sx); } let id: i32; if (ix < 0x3FDC0000) { if (ix < 0x3E400000) return x; id = -1; } else { x = builtin_abs<f64>(x); if (ix < 0x3FF30000) { if (ix < 0x3FE60000) { id = 0; x = (2.0 * x - 1.0) / (2.0 + x); } else { id = 1; x = (x - 1.0) / (x + 1.0); } } else { if (ix < 0x40038000) { id = 2; x = (x - 1.5) / (1.0 + 1.5 * x); } else { id = 3; x = -1.0 / x; } } } z = x * x; let w = z * z; let s1 = z * (aT0 + w * (aT2 + w * (aT4 + w * (aT6 + w * (aT8 + w * aT10))))); let s2 = w * (aT1 + w * (aT3 + w * (aT5 + w * (aT7 + w * aT9)))); let s3 = x * (s1 + s2); if (id < 0) return x - s3; switch (id) { case 0: { z = atanhi0 - ((s3 - atanlo0) - x); break; } case 1: { z = atanhi1 - ((s3 - atanlo1) - x); break; } case 2: { z = atanhi2 - ((s3 - atanlo2) - x); break; } case 3: { z = atanhi3 - ((s3 - atanlo3) - x); break; } default: unreachable(); } return builtin_copysign<f64>(z, sx); } export function atanh(x: f64): f64 { // see: musl/src/math/atanh.c let u = reinterpret<u64>(x); let e = u >> 52 & 0x7FF; let y = builtin_abs(x); if (e < 0x3FF - 1) { if (e >= 0x3FF - 32) y = 0.5 * log1p(2 * y + 2 * y * y / (1 - y)); } else { y = 0.5 * log1p(2 * (y / (1 - y))); } return builtin_copysign<f64>(y, x); } export function atan2(y: f64, x: f64): f64 { // see: musl/src/math/atan2.c and SUN COPYRIGHT NOTICE above const pi_lo = reinterpret<f64>(0x3CA1A62633145C07); // 1.2246467991473531772E-16 if (isNaN(x) || isNaN(y)) return x + y; let u = reinterpret<u64>(x); let ix = <u32>(u >> 32); let lx = <u32>u; u = reinterpret<u64>(y); let iy = <u32>(u >> 32); let ly = <u32>u; if ((ix - 0x3FF00000 | lx) == 0) return atan(y); let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); ix = ix & 0x7FFFFFFF; iy = iy & 0x7FFFFFFF; if ((iy | ly) == 0) { switch (m) { case 0: case 1: return y; case 2: return PI; case 3: return -PI; } } if ((ix | lx) == 0) return m & 1 ? -PI / 2 : PI / 2; if (ix == 0x7FF00000) { if (iy == 0x7FF00000) { let t = m & 2 ? 3 * PI / 4 : PI / 4; return m & 1 ? -t : t; } else { let t = m & 2 ? PI : 0; return m & 1 ? -t : t; } } let z: f64; if (ix + (64 << 20) < iy || iy == 0x7FF00000) return m & 1 ? -PI / 2 : PI / 2; if ((m & 2) && iy + (64 << 20) < ix) z = 0; else z = atan(builtin_abs<f64>(y / x)); switch (m) { case 0: return z; case 1: return -z; case 2: return PI - (z - pi_lo); case 3: return (z - pi_lo) - PI; } unreachable(); return 0; } export function cbrt(x: f64): f64 { // see: musl/src/math/cbrt.c and SUN COPYRIGHT NOTICE above const B1 = <u32>715094163, B2 = <u32>696219795, P0 = reinterpret<f64>(0x3FFE03E60F61E692), // 1.87595182427177009643 P1 = reinterpret<f64>(0xBFFE28E092F02420), // -1.88497979543377169875 P2 = reinterpret<f64>(0x3FF9F1604A49D6C2), // 1.621429720105354466140 P3 = reinterpret<f64>(0xBFE844CBBEE751D9), // -0.758397934778766047437 P4 = reinterpret<f64>(0x3FC2B000D4E4EDD7), // 0.145996192886612446982 Ox1p54 = reinterpret<f64>(0x4350000000000000); // 0x1p54 let u = reinterpret<u64>(x); let hx = <u32>(u >> 32) & 0x7FFFFFFF; if (hx >= 0x7FF00000) return x + x; if (hx < 0x00100000) { u = reinterpret<u64>(x * Ox1p54); hx = <u32>(u >> 32) & 0x7FFFFFFF; if (hx == 0) return x; hx = hx / 3 + B2; } else { hx = hx / 3 + B1; } u &= 1 << 63; u |= <u64>hx << 32; let t = reinterpret<f64>(u); let r = (t * t) * (t / x); t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4)); t = reinterpret<f64>((reinterpret<u64>(t) + 0x80000000) & 0xFFFFFFFFC0000000); let s = t * t; r = x / s; r = (r - t) / (2 * t + r); t = t + t * r; return t; } // @ts-ignore: decorator @inline export function ceil(x: f64): f64 { return builtin_ceil<f64>(x); } export function clz32(x: f64): f64 { if (!isFinite(x)) return 32; /* * Wasm (MVP) and JS have different approaches for double->int conversions. * * For emulate JS conversion behavior and avoid trapping from wasm we should modulate by MAX_INT * our float-point arguments before actual convertion to integers. */ return builtin_clz(dtoi32(x)); } export function cos(x: f64): f64 { // see: musl/src/math/cos.c let u = reinterpret<u64>(x); let ux = u32(u >> 32); let sign = ux >> 31; ux &= 0x7FFFFFFF; // |x| ~< pi/4 if (ux <= 0x3FE921FB) { if (ux < 0x3E46A09E) { // |x| < 2**-27 * sqrt(2) return 1.0; } return cos_kern(x, 0); } // sin(Inf or NaN) is NaN if (ux >= 0x7FF00000) return x - x; // argument reduction needed let n = rempio2(x, u, sign); let y0 = rempio2_y0; let y1 = rempio2_y1; x = n & 1 ? sin_kern(y0, y1, 1) : cos_kern(y0, y1); return (n + 1) & 2 ? -x : x; } export function cosh(x: f64): f64 { // see: musl/src/math/cosh.c let u = reinterpret<u64>(x); u &= 0x7FFFFFFFFFFFFFFF; x = reinterpret<f64>(u); let w = <u32>(u >> 32); let t: f64; if (w < 0x3FE62E42) { if (w < 0x3FF00000 - (26 << 20)) return 1; t = expm1(x); // return 1 + t * t / (2 * (1 + t)); return 1 + t * t / (2 + 2 * t); } if (w < 0x40862E42) { t = exp(x); return 0.5 * (t + 1 / t); } t = expo2(x, 1); return t; } export function exp(x: f64): f64 { // see: musl/src/math/exp.c and SUN COPYRIGHT NOTICE above if (ASC_SHRINK_LEVEL < 1) { return exp_lut(x); } else { const ln2hi = reinterpret<f64>(0x3FE62E42FEE00000), // 6.93147180369123816490e-01 ln2lo = reinterpret<f64>(0x3DEA39EF35793C76), // 1.90821492927058770002e-10 invln2 = reinterpret<f64>(0x3FF71547652B82FE), // 1.44269504088896338700e+00 P1 = reinterpret<f64>(0x3FC555555555553E), // 1.66666666666666019037e-01 P2 = reinterpret<f64>(0xBF66C16C16BEBD93), // -2.77777777770155933842e-03 P3 = reinterpret<f64>(0x3F11566AAF25DE2C), // 6.61375632143793436117e-05 P4 = reinterpret<f64>(0xBEBBBD41C5D26BF1), // -1.65339022054652515390e-06 P5 = reinterpret<f64>(0x3E66376972BEA4D0), // 4.13813679705723846039e-08 overflow = reinterpret<f64>(0x40862E42FEFA39EF), // 709.782712893383973096 underflow = reinterpret<f64>(0xC0874910D52D3051), // -745.13321910194110842 Ox1p1023 = reinterpret<f64>(0x7FE0000000000000); // 0x1p1023 let hx = u32(reinterpret<u64>(x) >> 32); let sign = hx >> 31; hx &= 0x7FFFFFFF; if (hx >= 0x4086232B) { if (isNaN(x)) return x; if (x > overflow) return x * Ox1p1023; if (x < underflow) return 0; } let hi: f64, lo: f64 = 0; let k = 0; if (hx > 0x3FD62E42) { if (hx >= 0x3FF0A2B2) { k = i32(invln2 * x + builtin_copysign<f64>(0.5, x)); } else { k = 1 - (sign << 1); } hi = x - k * ln2hi; lo = k * ln2lo; x = hi - lo; } else if (hx > 0x3E300000) { hi = x; } else return 1.0 + x; let xs = x * x; // let c = x - xp2 * (P1 + xp2 * (P2 + xp2 * (P3 + xp2 * (P4 + xp2 * P5)))); let xq = xs * xs; let c = x - (xs * P1 + xq * ((P2 + xs * P3) + xq * (P4 + xs * P5))); let y = 1.0 + (x * c / (2 - c) - lo + hi); return k == 0 ? y : scalbn(y, k); } } export function exp2(x: f64): f64 { return exp2_lut(x); } export function expm1(x: f64): f64 { // see: musl/src/math/expm1.c and SUN COPYRIGHT NOTICE above const o_threshold = reinterpret<f64>(0x40862E42FEFA39EF), // 7.09782712893383973096e+02 ln2_hi = reinterpret<f64>(0x3FE62E42FEE00000), // 6.93147180369123816490e-01 ln2_lo = reinterpret<f64>(0x3DEA39EF35793C76), // 1.90821492927058770002e-10 invln2 = reinterpret<f64>(0x3FF71547652B82FE), // 1.44269504088896338700e+00 Q1 = reinterpret<f64>(0xBFA11111111110F4), // -3.33333333333331316428e-02 Q2 = reinterpret<f64>(0x3F5A01A019FE5585), // 1.58730158725481460165e-03 Q3 = reinterpret<f64>(0xBF14CE199EAADBB7), // -7.93650757867487942473e-05 Q4 = reinterpret<f64>(0x3ED0CFCA86E65239), // 4.00821782732936239552e-06 Q5 = reinterpret<f64>(0xBE8AFDB76E09C32D), // -2.01099218183624371326e-07 Ox1p1023 = reinterpret<f64>(0x7FE0000000000000); // 0x1p1023 let u = reinterpret<u64>(x); let hx = u32(u >> 32) & 0x7FFFFFFF; let sign = u32(u >> 63); let k = 0; if (hx >= 0x4043687A) { if (isNaN(x)) return x; if (sign) return -1; if (x > o_threshold) return x * Ox1p1023; } let c = 0.0, t: f64; if (hx > 0x3FD62E42) { k = select<i32>( 1 - (sign << 1), i32(invln2 * x + builtin_copysign<f64>(0.5, x)), hx < 0x3FF0A2B2 ); t = <f64>k; let hi = x - t * ln2_hi; let lo = t * ln2_lo; x = hi - lo; c = (hi - x) - lo; } else if (hx < 0x3C900000) return x; let hfx = 0.5 * x; let hxs = x * hfx; // let r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); let hxq = hxs * hxs; let r1 = (1.0 + hxs * Q1) + hxq * ((Q2 + hxs * Q3) + hxq * (Q4 + hxs * Q5)); t = 3.0 - r1 * hfx; let e = hxs * ((r1 - t) / (6.0 - x * t)); if (k == 0) return x - (x * e - hxs); e = x * (e - c) - c; e -= hxs; if (k == -1) return 0.5 * (x - e) - 0.5; if (k == 1) { if (x < -0.25) return -2.0 * (e - (x + 0.5)); return 1.0 + 2.0 * (x - e); } u = (0x3FF + k) << 52; let twopk = reinterpret<f64>(u); let y: f64; if (k < 0 || k > 56) { y = x - e + 1.0; if (k == 1024) y = y * 2.0 * Ox1p1023; else y = y * twopk; return y - 1.0; } u = (0x3FF - k) << 52; y = reinterpret<f64>(u); if (k < 20) y = (1 - y) - e; else y = 1 - (e + y); return (x + y) * twopk; } // @ts-ignore: decorator @inline export function floor(x: f64): f64 { return builtin_floor<f64>(x); } // @ts-ignore: decorator @inline export function fround(x: f64): f64 { return <f32>x; } export function hypot(x: f64, y: f64): f64 { // see: musl/src/math/hypot.c const SPLIT = reinterpret<f64>(0x41A0000000000000) + 1, // 0x1p27 + 1 Ox1p700 = reinterpret<f64>(0x6BB0000000000000), Ox1p_700 = reinterpret<f64>(0x1430000000000000); let ux = reinterpret<u64>(x); let uy = reinterpret<u64>(y); ux &= 0x7FFFFFFFFFFFFFFF; uy &= 0x7FFFFFFFFFFFFFFF; if (ux < uy) { let ut = ux; ux = uy; uy = ut; } let ex = i32(ux >> 52); let ey = i32(uy >> 52); y = reinterpret<f64>(uy); if (ey == 0x7FF) return y; x = reinterpret<f64>(ux); if (ex == 0x7FF || uy == 0) return x; if (ex - ey > 64) return x + y; let z = 1.0; if (ex > 0x3FF + 510) { z = Ox1p700; x *= Ox1p_700; y *= Ox1p_700; } else if (ey < 0x3FF - 450) { z = Ox1p_700; x *= Ox1p700; y *= Ox1p700; } let c = x * SPLIT; let h = x - c + c; let l = x - h; let hx = x * x; let lx = h * h - hx + (2 * h + l) * l; c = y * SPLIT; h = y - c + c; l = y - h; let hy = y * y; let ly = h * h - hy + (2 * h + l) * l; return z * builtin_sqrt(ly + lx + hy + hx); } export function imul(x: f64, y: f64): f64 { /* * Wasm (MVP) and JS have different approaches for double->int conversions. * * For emulate JS conversion behavior and avoid trapping from wasm we should modulate by MAX_INT * our float-point arguments before actual convertion to integers. */ if (!isFinite(x + y)) return 0; return dtoi32(x) * dtoi32(y); } export function log(x: f64): f64 { // see: musl/src/math/log.c and SUN COPYRIGHT NOTICE above if (ASC_SHRINK_LEVEL < 1) { return log_lut(x); } else { const ln2_hi = reinterpret<f64>(0x3FE62E42FEE00000), // 6.93147180369123816490e-01 ln2_lo = reinterpret<f64>(0x3DEA39EF35793C76), // 1.90821492927058770002e-10 Lg1 = reinterpret<f64>(0x3FE5555555555593), // 6.666666666666735130e-01 Lg2 = reinterpret<f64>(0x3FD999999997FA04), // 3.999999999940941908e-01 Lg3 = reinterpret<f64>(0x3FD2492494229359), // 2.857142874366239149e-01 Lg4 = reinterpret<f64>(0x3FCC71C51D8E78AF), // 2.222219843214978396e-01 Lg5 = reinterpret<f64>(0x3FC7466496CB03DE), // 1.818357216161805012e-01 Lg6 = reinterpret<f64>(0x3FC39A09D078C69F), // 1.531383769920937332e-01 Lg7 = reinterpret<f64>(0x3FC2F112DF3E5244), // 1.479819860511658591e-01 Ox1p54 = reinterpret<f64>(0x4350000000000000); // 0x1p54 let u = reinterpret<u64>(x); let hx = u32(u >> 32); let k = 0; let sign = hx >> 31; if (sign || hx < 0x00100000) { if (u << 1 == 0) return -1 / (x * x); if (sign) return (x - x) / 0.0; k -= 54; x *= Ox1p54; u = reinterpret<u64>(x); hx = u32(u >> 32); } else if (hx >= 0x7FF00000) { return x; } else if (hx == 0x3FF00000 && u << 32 == 0) { return 0; } hx += 0x3FF00000 - 0x3FE6A09E; k += (<i32>hx >> 20) - 0x3FF; hx = (hx & 0x000FFFFF) + 0x3FE6A09E; u = <u64>hx << 32 | (u & 0xFFFFFFFF); x = reinterpret<f64>(u); let f = x - 1.0; let hfsq = 0.5 * f * f; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); let t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); let r = t2 + t1; let dk = <f64>k; return s * (hfsq + r) + dk * ln2_lo - hfsq + f + dk * ln2_hi; } } export function log10(x: f64): f64 { // see: musl/src/math/log10.c and SUN COPYRIGHT NOTICE above const ivln10hi = reinterpret<f64>(0x3FDBCB7B15200000), // 4.34294481878168880939e-01 ivln10lo = reinterpret<f64>(0x3DBB9438CA9AADD5), // 2.50829467116452752298e-11 log10_2hi = reinterpret<f64>(0x3FD34413509F6000), // 3.01029995663611771306e-01 log10_2lo = reinterpret<f64>(0x3D59FEF311F12B36), // 3.69423907715893078616e-13 Lg1 = reinterpret<f64>(0x3FE5555555555593), // 6.666666666666735130e-01 Lg2 = reinterpret<f64>(0x3FD999999997FA04), // 3.999999999940941908e-01 Lg3 = reinterpret<f64>(0x3FD2492494229359), // 2.857142874366239149e-01 Lg4 = reinterpret<f64>(0x3FCC71C51D8E78AF), // 2.222219843214978396e-01 Lg5 = reinterpret<f64>(0x3FC7466496CB03DE), // 1.818357216161805012e-01 Lg6 = reinterpret<f64>(0x3FC39A09D078C69F), // 1.531383769920937332e-01 Lg7 = reinterpret<f64>(0x3FC2F112DF3E5244), // 1.479819860511658591e-01 Ox1p54 = reinterpret<f64>(0x4350000000000000); // 0x1p54 let u = reinterpret<u64>(x); let hx = u32(u >> 32); let k = 0; let sign = hx >> 31; if (sign || hx < 0x00100000) { if (u << 1 == 0) return -1 / (x * x); if (sign) return (x - x) / 0.0; k -= 54; x *= Ox1p54; u = reinterpret<u64>(x); hx = u32(u >> 32); } else if (hx >= 0x7FF00000) { return x; } else if (hx == 0x3FF00000 && u << 32 == 0) { return 0; } hx += 0x3FF00000 - 0x3FE6A09E; k += i32(hx >> 20) - 0x3FF; hx = (hx & 0x000FFFFF) + 0x3FE6A09E; u = <u64>hx << 32 | (u & 0xFFFFFFFF); x = reinterpret<f64>(u); let f = x - 1.0; let hfsq = 0.5 * f * f; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); let t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); let r = t2 + t1; let hi = f - hfsq; u = reinterpret<u64>(hi); u &= 0xFFFFFFFF00000000; hi = reinterpret<f64>(u); let lo = f - hi - hfsq + s * (hfsq + r); let val_hi = hi * ivln10hi; let dk = <f64>k; let y = dk * log10_2hi; let val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi; w = y + val_hi; val_lo += (y - w) + val_hi; return val_lo + w; } export function log1p(x: f64): f64 { // see: musl/src/math/log1p.c and SUN COPYRIGHT NOTICE above const ln2_hi = reinterpret<f64>(0x3FE62E42FEE00000), // 6.93147180369123816490e-01 ln2_lo = reinterpret<f64>(0x3DEA39EF35793C76), // 1.90821492927058770002e-10 Lg1 = reinterpret<f64>(0x3FE5555555555593), // 6.666666666666735130e-01 Lg2 = reinterpret<f64>(0x3FD999999997FA04), // 3.999999999940941908e-01 Lg3 = reinterpret<f64>(0x3FD2492494229359), // 2.857142874366239149e-01 Lg4 = reinterpret<f64>(0x3FCC71C51D8E78AF), // 2.222219843214978396e-01 Lg5 = reinterpret<f64>(0x3FC7466496CB03DE), // 1.818357216161805012e-01 Lg6 = reinterpret<f64>(0x3FC39A09D078C69F), // 1.531383769920937332e-01 Lg7 = reinterpret<f64>(0x3FC2F112DF3E5244); // 1.479819860511658591e-01 let u = reinterpret<u64>(x); let hx = u32(u >> 32); let k = 1; let c = 0.0, f = 0.0; if (hx < 0x3FDA827A || bool(hx >> 31)) { if (hx >= 0xBFF00000) { if (x == -1) return x / 0.0; return (x - x) / 0.0; } if (hx << 1 < 0x3CA00000 << 1) return x; if (hx <= 0xBFD2BEC4) { k = 0; c = 0; f = x; } } else if (hx >= 0x7FF00000) return x; if (k) { u = reinterpret<u64>(1 + x); let hu = u32(u >> 32); hu += 0x3FF00000 - 0x3FE6A09E; k = i32(hu >> 20) - 0x3FF; if (k < 54) { let uf = reinterpret<f64>(u); c = k >= 2 ? 1 - (uf - x) : x - (uf - 1); c /= uf; } else c = 0; hu = (hu & 0x000FFFFF) + 0x3FE6A09E; u = <u64>hu << 32 | (u & 0xFFFFFFFF); f = reinterpret<f64>(u) - 1; } let hfsq = 0.5 * f * f; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); let t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); let r = t2 + t1; let dk = <f64>k; return s * (hfsq + r) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi; } export function log2(x: f64): f64 { // see: musl/src/math/log2.c and SUN COPYRIGHT NOTICE above if (ASC_SHRINK_LEVEL < 1) { return log2_lut(x); } else { const ivln2hi = reinterpret<f64>(0x3FF7154765200000), // 1.44269504072144627571e+00 ivln2lo = reinterpret<f64>(0x3DE705FC2EEFA200), // 1.67517131648865118353e-10 Lg1 = reinterpret<f64>(0x3FE5555555555593), // 6.666666666666735130e-01 Lg2 = reinterpret<f64>(0x3FD999999997FA04), // 3.999999999940941908e-01 Lg3 = reinterpret<f64>(0x3FD2492494229359), // 2.857142874366239149e-01 Lg4 = reinterpret<f64>(0x3FCC71C51D8E78AF), // 2.222219843214978396e-01 Lg5 = reinterpret<f64>(0x3FC7466496CB03DE), // 1.818357216161805012e-01 Lg6 = reinterpret<f64>(0x3FC39A09D078C69F), // 1.531383769920937332e-01 Lg7 = reinterpret<f64>(0x3FC2F112DF3E5244), // 1.479819860511658591e-01 Ox1p54 = reinterpret<f64>(0x4350000000000000); // 1p54 let u = reinterpret<u64>(x); let hx = u32(u >> 32); let k = 0; let sign = hx >> 31; if (sign || hx < 0x00100000) { if (u << 1 == 0) return -1 / (x * x); if (sign) return (x - x) / 0.0; k -= 54; x *= Ox1p54; u = reinterpret<u64>(x); hx = u32(u >> 32); } else if (hx >= 0x7FF00000) { return x; } else if (hx == 0x3FF00000 && u << 32 == 0) { return 0; } hx += 0x3FF00000 - 0x3FE6A09E; k += i32(hx >> 20) - 0x3FF; hx = (hx & 0x000FFFFF) + 0x3FE6A09E; u = <u64>hx << 32 | (u & 0xFFFFFFFF); x = reinterpret<f64>(u); let f = x - 1.0; let hfsq = 0.5 * f * f; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); let t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); let r = t2 + t1; let hi = f - hfsq; u = reinterpret<u64>(hi); u &= 0xFFFFFFFF00000000; hi = reinterpret<f64>(u); let lo = f - hi - hfsq + s * (hfsq + r); let val_hi = hi * ivln2hi; let val_lo = (lo + hi) * ivln2lo + lo * ivln2hi; let y = <f64>k; w = y + val_hi; val_lo += (y - w) + val_hi; val_hi = w; return val_lo + val_hi; } } // @ts-ignore: decorator @inline export function max(value1: f64, value2: f64): f64 { return builtin_max<f64>(value1, value2); } // @ts-ignore: decorator @inline export function min(value1: f64, value2: f64): f64 { return builtin_min<f64>(value1, value2); } export function pow(x: f64, y: f64): f64 { // see: musl/src/math/pow.c and SUN COPYRIGHT NOTICE above // TODO: remove this fast pathes after introduced own mid-end IR with "stdlib call simplify" transforms if (builtin_abs<f64>(y) <= 2) { if (y == 2.0) return x * x; if (y == 0.5) { return select<f64>( builtin_abs<f64>(builtin_sqrt<f64>(x)), Infinity, x != -Infinity ); } if (y == -1.0) return 1 / x; if (y == 1.0) return x; if (y == 0.0) return 1.0; } if (ASC_SHRINK_LEVEL < 1) { return pow_lut(x, y); } else { const dp_h1 = reinterpret<f64>(0x3FE2B80340000000), // 5.84962487220764160156e-01 dp_l1 = reinterpret<f64>(0x3E4CFDEB43CFD006), // 1.35003920212974897128e-08 two53 = reinterpret<f64>(0x4340000000000000), // 9007199254740992.0 huge = reinterpret<f64>(0x7E37E43C8800759C), // 1e+300 tiny = reinterpret<f64>(0x01A56E1FC2F8F359), // 1e-300 L1 = reinterpret<f64>(0x3FE3333333333303), // 5.99999999999994648725e-01 L2 = reinterpret<f64>(0x3FDB6DB6DB6FABFF), // 4.28571428578550184252e-01 L3 = reinterpret<f64>(0x3FD55555518F264D), // 3.33333329818377432918e-01 L4 = reinterpret<f64>(0x3FD17460A91D4101), // 2.72728123808534006489e-01 L5 = reinterpret<f64>(0x3FCD864A93C9DB65), // 2.30660745775561754067e-01 L6 = reinterpret<f64>(0x3FCA7E284A454EEF), // 2.06975017800338417784e-01 P1 = reinterpret<f64>(0x3FC555555555553E), // 1.66666666666666019037e-01 P2 = reinterpret<f64>(0xBF66C16C16BEBD93), // -2.77777777770155933842e-03 P3 = reinterpret<f64>(0x3F11566AAF25DE2C), // 6.61375632143793436117e-05 P4 = reinterpret<f64>(0xBEBBBD41C5D26BF1), // -1.65339022054652515390e-06 P5 = reinterpret<f64>(0x3E66376972BEA4D0), // 4.13813679705723846039e-08 lg2 = reinterpret<f64>(0x3FE62E42FEFA39EF), // 6.93147180559945286227e-01 lg2_h = reinterpret<f64>(0x3FE62E4300000000), // 6.93147182464599609375e-01 lg2_l = reinterpret<f64>(0xBE205C610CA86C39), // -1.90465429995776804525e-09 ovt = reinterpret<f64>(0x3C971547652B82FE), // 8.0085662595372944372e-017 cp = reinterpret<f64>(0x3FEEC709DC3A03FD), // 9.61796693925975554329e-01 cp_h = reinterpret<f64>(0x3FEEC709E0000000), // 9.61796700954437255859e-01 cp_l = reinterpret<f64>(0xBE3E2FE0145B01F5), // -7.02846165095275826516e-09 ivln2 = reinterpret<f64>(0x3FF71547652B82FE), // 1.44269504088896338700e+00 ivln2_h = reinterpret<f64>(0x3FF7154760000000), // 1.44269502162933349609e+00 ivln2_l = reinterpret<f64>(0x3E54AE0BF85DDF44), // 1.92596299112661746887e-08 inv3 = reinterpret<f64>(0x3FD5555555555555); // 0.3333333333333333333333 let u_ = reinterpret<u64>(x); let hx = i32(u_ >> 32); let lx = <u32>u_; u_ = reinterpret<u64>(y); let hy = i32(u_ >> 32); let ly = <u32>u_; let ix = hx & 0x7FFFFFFF; let iy = hy & 0x7FFFFFFF; if ((iy | ly) == 0) return 1.0; // x**0 = 1, even if x is NaN // if (hx == 0x3FF00000 && lx == 0) return 1.0; // C: 1**y = 1, even if y is NaN, JS: NaN if ( // NaN if either arg is NaN ix > 0x7FF00000 || (ix == 0x7FF00000 && lx != 0) || iy > 0x7FF00000 || (iy == 0x7FF00000 && ly != 0) ) return x + y; let yisint = 0, k: i32; if (hx < 0) { if (iy >= 0x43400000) yisint = 2; else if (iy >= 0x3FF00000) { k = (iy >> 20) - 0x3FF; let offset = select<u32>(52, 20, k > 20) - k; let Ly = select<u32>(ly, iy, k > 20); let jj = Ly >> offset; if ((jj << offset) == Ly) yisint = 2 - (jj & 1); } } if (ly == 0) { if (iy == 0x7FF00000) { // y is +-inf if (((ix - 0x3FF00000) | lx) == 0) return NaN; // C: (-1)**+-inf is 1, JS: NaN else if (ix >= 0x3FF00000) return hy >= 0 ? y : 0.0; // (|x|>1)**+-inf = inf,0 else return hy >= 0 ? 0.0 : -y; // (|x|<1)**+-inf = 0,inf } if (iy == 0x3FF00000) { if (hy >= 0) return x; return 1 / x; } if (hy == 0x40000000) return x * x; if (hy == 0x3FE00000) { if (hx >= 0) return builtin_sqrt(x); } } let ax = builtin_abs<f64>(x), z: f64; if (lx == 0) { if (ix == 0 || ix == 0x7FF00000 || ix == 0x3FF00000) { z = ax; if (hy < 0) z = 1.0 / z; if (hx < 0) { if (((ix - 0x3FF00000) | yisint) == 0) { let d = z - z; z = d / d; } else if (yisint == 1) z = -z; } return z; } } let s = 1.0; if (hx < 0) { if (yisint == 0) { let d = x - x; return d / d; } if (yisint == 1) s = -1.0; } let t1: f64, t2: f64, p_h: f64, p_l: f64, r: f64, t: f64, u: f64, v: f64, w: f64; let j: i32, n: i32; if (iy > 0x41E00000) { if (iy > 0x43F00000) { if (ix <= 0x3FEFFFFF) return hy < 0 ? huge * huge : tiny * tiny; if (ix >= 0x3FF00000) return hy > 0 ? huge * huge : tiny * tiny; } if (ix < 0x3FEFFFFF) return hy < 0 ? s * huge * huge : s * tiny * tiny; if (ix > 0x3FF00000) return hy > 0 ? s * huge * huge : s * tiny * tiny; t = ax - 1.0; w = (t * t) * (0.5 - t * (inv3 - t * 0.25)); u = ivln2_h * t; v = t * ivln2_l - w * ivln2; t1 = u + v; t1 = reinterpret<f64>(reinterpret<u64>(t1) & 0xFFFFFFFF00000000); t2 = v - (t1 - u); } else { let ss: f64, s2: f64, s_h: f64, s_l: f64, t_h: f64, t_l: f64; n = 0; if (ix < 0x00100000) { ax *= two53; n -= 53; ix = <u32>(reinterpret<u64>(ax) >> 32); } n += (ix >> 20) - 0x3FF; j = ix & 0x000FFFFF; ix = j | 0x3FF00000; if (j <= 0x3988E) k = 0; else if (j < 0xBB67A) k = 1; else { k = 0; n += 1; ix -= 0x00100000; } ax = reinterpret<f64>(reinterpret<u64>(ax) & 0xFFFFFFFF | (<u64>ix << 32)); let bp = select<f64>(1.5, 1.0, k); // k ? 1.5 : 1.0 u = ax - bp; v = 1.0 / (ax + bp); ss = u * v; s_h = ss; s_h = reinterpret<f64>(reinterpret<u64>(s_h) & 0xFFFFFFFF00000000); t_h = reinterpret<f64>(u64(((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)) << 32); t_l = ax - (t_h - bp); s_l = v * ((u - s_h * t_h) - s_h * t_l); s2 = ss * ss; r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + ss); s2 = s_h * s_h; t_h = 3.0 + s2 + r; t_h = reinterpret<f64>(reinterpret<u64>(t_h) & 0xFFFFFFFF00000000); t_l = r - ((t_h - 3.0) - s2); u = s_h * t_h; v = s_l * t_h + t_l * ss; p_h = u + v; p_h = reinterpret<f64>(reinterpret<u64>(p_h) & 0xFFFFFFFF00000000); p_l = v - (p_h - u); let z_h = cp_h * p_h; let dp_l = select<f64>(dp_l1, 0.0, k); let z_l = cp_l * p_h + p_l * cp + dp_l; t = <f64>n; let dp_h = select<f64>(dp_h1, 0.0, k); t1 = ((z_h + z_l) + dp_h) + t; t1 = reinterpret<f64>(reinterpret<u64>(t1) & 0xFFFFFFFF00000000); t2 = z_l - (((t1 - t) - dp_h) - z_h); } let y1 = y; y1 = reinterpret<f64>(reinterpret<u64>(y1) & 0xFFFFFFFF00000000); p_l = (y - y1) * t1 + y * t2; p_h = y1 * t1; z = p_l + p_h; u_ = reinterpret<u64>(z); j = u32(u_ >> 32); let i = <i32>u_; if (j >= 0x40900000) { if (((j - 0x40900000) | i) != 0) return s * huge * huge; if (p_l + ovt > z - p_h) return s * huge * huge; } else if ((j & 0x7FFFFFFF) >= 0x4090CC00) { if (((j - 0xC090CC00) | i) != 0) return s * tiny * tiny; if (p_l <= z - p_h) return s * tiny * tiny; } i = j & 0x7FFFFFFF; k = (i >> 20) - 0x3FF;