arela
Version:
AI-powered CTO with multi-agent orchestration, code summarization, visual testing (web + mobile) for blazing fast development.
51 lines (41 loc) โข 1.54 kB
JavaScript
/**
* Compare OpenAI vs Ollama classification performance
* Run: node test-openai-vs-ollama.mjs
*/
import { config } from 'dotenv';
import { QueryClassifier } from './dist/meta-rag/classifier.js';
// Load .env file
config();
const queries = [
"Continue working on authentication",
"What is JWT?",
"Show me auth dependencies",
"What's my preferred testing framework?",
"Why did we choose Postgres?"
];
console.log('๐งช Comparing OpenAI vs Ollama Classification\n');
// Test with OpenAI
console.log('๐ Testing OpenAI (gpt-4o-mini)...\n');
const openaiClassifier = new QueryClassifier();
await openaiClassifier.init();
const openaiTimes = [];
for (const query of queries) {
const start = Date.now();
const result = await openaiClassifier.classify(query);
const duration = Date.now() - start;
openaiTimes.push(duration);
console.log(` "${query}"`);
console.log(` โ ${result.type} (${result.confidence}) in ${duration}ms\n`);
}
const openaiAvg = Math.round(openaiTimes.reduce((a, b) => a + b, 0) / openaiTimes.length);
const openaiMin = Math.min(...openaiTimes);
const openaiMax = Math.max(...openaiTimes);
console.log(`\n๐ OpenAI Stats:`);
console.log(` Average: ${openaiAvg}ms`);
console.log(` Min: ${openaiMin}ms`);
console.log(` Max: ${openaiMax}ms`);
console.log(` Cost: ~$0.0005 (5 queries)\n`);
console.log('โ
OpenAI is working great!\n');
console.log('๐ก Tip: 700-1500ms is normal for API calls');
console.log('๐ก This is faster than querying all 6 memory layers!');