UNPKG

arela

Version:

AI-powered CTO with multi-agent orchestration, code summarization, visual testing (web + mobile) for blazing fast development.

51 lines (41 loc) โ€ข 1.54 kB
#!/usr/bin/env node /** * Compare OpenAI vs Ollama classification performance * Run: node test-openai-vs-ollama.mjs */ import { config } from 'dotenv'; import { QueryClassifier } from './dist/meta-rag/classifier.js'; // Load .env file config(); const queries = [ "Continue working on authentication", "What is JWT?", "Show me auth dependencies", "What's my preferred testing framework?", "Why did we choose Postgres?" ]; console.log('๐Ÿงช Comparing OpenAI vs Ollama Classification\n'); // Test with OpenAI console.log('๐Ÿ“Š Testing OpenAI (gpt-4o-mini)...\n'); const openaiClassifier = new QueryClassifier(); await openaiClassifier.init(); const openaiTimes = []; for (const query of queries) { const start = Date.now(); const result = await openaiClassifier.classify(query); const duration = Date.now() - start; openaiTimes.push(duration); console.log(` "${query}"`); console.log(` โ†’ ${result.type} (${result.confidence}) in ${duration}ms\n`); } const openaiAvg = Math.round(openaiTimes.reduce((a, b) => a + b, 0) / openaiTimes.length); const openaiMin = Math.min(...openaiTimes); const openaiMax = Math.max(...openaiTimes); console.log(`\n๐Ÿ“ˆ OpenAI Stats:`); console.log(` Average: ${openaiAvg}ms`); console.log(` Min: ${openaiMin}ms`); console.log(` Max: ${openaiMax}ms`); console.log(` Cost: ~$0.0005 (5 queries)\n`); console.log('โœ… OpenAI is working great!\n'); console.log('๐Ÿ’ก Tip: 700-1500ms is normal for API calls'); console.log('๐Ÿ’ก This is faster than querying all 6 memory layers!');