UNPKG

arela

Version:

AI-powered CTO with multi-agent orchestration, code summarization, visual testing (web + mobile) for blazing fast development.

44 lines (33 loc) • 1.36 kB
import ollama from 'ollama'; const SHORT_PROMPT = `Classify this query into ONE type: PROCEDURAL, FACTUAL, ARCHITECTURAL, USER, or HISTORICAL. Types: - PROCEDURAL: Do/create/continue task ("implement auth", "continue working") - FACTUAL: Explain concept ("what is JWT?", "how does bcrypt work?") - ARCHITECTURAL: Code structure ("show dependencies", "what imports X?") - USER: Personal preferences ("my preferred framework", "my expertise") - HISTORICAL: Past decisions ("why did we choose X?", "what decisions were made?") Query: "QUERY_HERE" Return JSON: {"type": "TYPE", "confidence": 0.0-1.0}`; const queries = [ "Continue working on authentication", "What is JWT?", "Show me auth dependencies" ]; const models = ["llama3.2:3b", "qwen2.5:3b"]; console.log("šŸ”„ Testing SHORT prompt across models\n"); for (const model of models) { console.log(`\nšŸ¤– Model: ${model}`); for (const query of queries) { const start = Date.now(); const response = await ollama.generate({ model, prompt: SHORT_PROMPT.replace("QUERY_HERE", query), format: "json", keep_alive: -1, options: { temperature: 0.1, num_predict: 50 } }); const duration = Date.now() - start; const parsed = JSON.parse(response.response.trim()); console.log(` ${duration}ms - ${parsed.type} (${parsed.confidence})`); } }