arela
Version:
AI-powered CTO with multi-agent orchestration, code summarization, visual testing (web + mobile) for blazing fast development.
310 lines (235 loc) ⢠6.71 kB
Markdown
# š v4.0.2 SHIPPED + v4.1.0 READY TO BUILD
**Date:** 2025-11-15
**Status:** v4.0.2 LIVE on NPM, v4.1.0 tickets created
---
## ā
v4.0.2 - SHIPPED!
### What We Shipped
- **OpenAI Integration** - gpt-4o-mini as primary classifier
- **700-1500ms classification** - Fast and reliable
- **Auto-fallback** - Uses Ollama if OpenAI unavailable
- **Simple .env setup** - Just add OPENAI_API_KEY
### Package Info
- **Version:** 4.0.2
- **Size:** 1.3 MB
- **Files:** 990
- **Status:** LIVE on npm registry
### Install It
```bash
npm install -g arela@latest
arela init
echo "OPENAI_API_KEY=sk-proj-..." >> .env
```
### Documentation Updated
- ā
README.md - v4.0.2 features
- ā
CHANGELOG.md - Full release notes
- ā
QUICKSTART.md - OpenAI setup guide
- ā
package.json - Version 4.0.2
- ā
src/cli.ts - Version 4.0.2
---
## šÆ v4.1.0 - READY TO BUILD
### Goal
**Complete Meta-RAG Context Routing System**
Integrate: Classifier ā Router ā Fusion ā Context Router
### Architecture
```
User Query
ā
QueryClassifier (OpenAI/Ollama) ā
DONE
ā
MemoryRouter (layer selection) ā³ NEXT
ā
FusionEngine (dedup + merge) ā³ NEXT
ā
ContextRouter (orchestrator) ā³ NEXT
ā
MCP Server (arela_search) ā³ INTEGRATION
ā
Cascade/Agents
```
### Tickets Created
**1. META-RAG-002: Memory Router**
- **Agent:** Claude
- **Time:** 2-3 hours
- **Status:** Ready to start
- **File:** `.arela/tickets/claude/META-RAG-002-v4.1.0-memory-router.md`
**What it does:**
- Routes queries to appropriate memory layers
- Parallel execution (Promise.all)
- Timeout handling (50ms per layer)
- Result aggregation
**2. FUSION-001: Result Fusion**
- **Agent:** Claude
- **Time:** 2-3 hours
- **Status:** Depends on META-RAG-002
- **File:** `.arela/tickets/claude/FUSION-001-v4.1.0-result-fusion.md`
**What it does:**
- Scores results by relevance
- Semantic deduplication
- Layer weighting
- Token limiting
**3. CONTEXT-001: Context Router Integration**
- **Agent:** Cascade
- **Time:** 2-3 hours
- **Status:** Depends on FUSION-001
- **File:** `.arela/tickets/cascade/CONTEXT-001-v4.1.0-context-router.md`
**What it does:**
- End-to-end orchestration
- MCP integration
- CLI command (`arela route`)
- Performance tracking
### Timeline
**Total Time:** 6-9 hours (2-3 days)
**Day 1:**
- META-RAG-002 (Memory Router) - 2-3 hours
**Day 2:**
- FUSION-001 (Result Fusion) - 2-3 hours
**Day 3:**
- CONTEXT-001 (Context Router) - 2-3 hours
- Testing + Integration
- Ship v4.1.0
### Success Criteria
- [ ] End-to-end routing working
- [ ] <3s total query time
- [ ] >90% routing accuracy
- [ ] Token limits respected
- [ ] MCP integration complete
- [ ] CLI command working
- [ ] All tests passing
### Expected Performance
**Query: "Continue working on authentication"**
```
Classification: 700-1500ms (OpenAI)
Retrieval: 100-200ms (parallel layers)
Fusion: 50-100ms (dedup + merge)
Total: <2s ā
```
### User Experience
**Before v4.1.0:**
```
Agent: arela_search "auth code"
Result: All 6 layers queried (slow, expensive)
```
**After v4.1.0:**
```
Agent: arela_search "Continue working on auth"
Arela:
- Classifies as PROCEDURAL
- Routes to Session + Project + Graph only
- Deduplicates results
- Returns optimal context
Result: 3 layers queried (fast, cheap, relevant)
```
### CLI Command
```bash
# Test routing
arela route "Continue working on authentication" --debug
# Output:
š Routing query: "Continue working on authentication"
š Classification: procedural (1.0)
šÆ Layers: session, project, graph
š Routed to 3 layers
š„ Fused 47 ā 12 items
š¾ Estimated tokens: 8543
ā
Total: 1479ms
```
### Files to Create
**Memory Router:**
- `src/meta-rag/router.ts`
- `test/meta-rag/router.test.ts`
**Fusion Engine:**
- `src/fusion/scorer.ts`
- `src/fusion/dedup.ts`
- `src/fusion/merger.ts`
- `src/fusion/index.ts`
- `test/fusion/fusion.test.ts`
**Context Router:**
- `src/context-router.ts`
- `test/context-router.test.ts`
- Update `src/mcp/server.ts`
- Update `src/cli.ts`
---
## š How to Execute
### Option 1: Orchestration (Recommended)
```bash
# Start with Memory Router
arela orchestrate --tickets META-RAG-002-v4.1.0-memory-router
# Then Fusion Engine
arela orchestrate --tickets FUSION-001-v4.1.0-result-fusion
# Finally Context Router
arela orchestrate --tickets CONTEXT-001-v4.1.0-context-router
```
### Option 2: Manual Delegation
1. Assign META-RAG-002 to Claude
2. Wait for completion
3. Assign FUSION-001 to Claude
4. Wait for completion
5. Assign CONTEXT-001 to Cascade
6. Review and ship
### Option 3: Parallel (Risky)
- META-RAG-002 and FUSION-001 can be built in parallel
- CONTEXT-001 must wait for both
---
## š Impact
### Token Savings
**Current:** Query all 6 layers every time
- Session: 2k tokens
- Project: 3k tokens
- User: 1k tokens
- Vector: 5k tokens
- Graph: 2k tokens
- Governance: 1k tokens
- **Total: 14k tokens per query**
**After v4.1.0:** Query only relevant layers
- PROCEDURAL: Session + Project + Graph = 7k tokens (50% savings)
- FACTUAL: Vector only = 5k tokens (64% savings)
- USER: User only = 1k tokens (93% savings)
**Average savings: 50-70%**
### Performance
**Current:** Sequential queries = 600ms+ (6 layers Ć 100ms)
**After v4.1.0:** Parallel queries = 100-200ms (3 layers in parallel)
**Speedup: 3-6x faster**
### Quality
**Current:** Dump all memory, hope LLM finds relevant bits
**After v4.1.0:**
- Smart routing (right layers)
- Relevance scoring (best results first)
- Deduplication (no redundancy)
- Token limiting (fits context window)
**Result: Better context, better responses**
---
## š What This Enables
### For Cascade (You)
- Faster context gathering (<2s vs 5s+)
- More relevant results
- Lower token costs
- Better responses
### For Users
- Faster AI responses
- Lower API costs
- More accurate answers
- Better memory utilization
### For Arela
- Intelligent context routing
- Scalable to millions of files
- Production-ready memory system
- Foundation for v5.0 (VS Code extension)
---
## š® After v4.1.0
**v4.2.0 (Optional):**
- TOON compression (50-70% token savings)
- Adaptive routing (learn from usage)
- Streaming results
**v5.0.0 (Big One):**
- VS Code Extension
- Direct IDE integration
- No MCP dependency
- Reliable context routing
---
## š Summary
**v4.0.2:** ā
SHIPPED - OpenAI integration working
**v4.1.0:** šÆ READY - 3 tickets created, 6-9 hours of work
**Next Step:** Start with META-RAG-002 (Memory Router)
**The Goal:** Complete intelligent context routing system
**The Vision:** Arela understands your queries and delivers the perfect context, every time.
---
**Let's build v4.1.0!** š