UNPKG

arela

Version:

AI-powered CTO with multi-agent orchestration, code summarization, visual testing (web + mobile) for blazing fast development.

125 lines (90 loc) 2.52 kB
# Meta-RAG Testing Instructions ## Setup (Optional but Recommended) For fast classification (~200ms vs 1.5s with Ollama), set up your OpenAI API key: **Option 1: Interactive Setup (Easiest)** ```bash npm run arela -- setup ``` **Option 2: Manual Setup** ```bash # Edit .env file nano .env # Add your key: OPENAI_API_KEY=sk-proj-... ``` **Option 3: Environment Variable** ```bash export OPENAI_API_KEY="sk-proj-..." ``` Without it, will fall back to Ollama (slower but free). ## Quick Test (Recommended) Run the test script: ```bash node test-meta-rag.mjs ``` This will test all 5 query types and show: - Classification results (OpenAI or Ollama) - Routing decisions - Memory layers queried - Performance stats - Token estimates ## Manual CLI Testing Test individual queries: ```bash # PROCEDURAL query npm run arela -- route "Continue working on authentication" # FACTUAL query npm run arela -- route "What is JWT?" # ARCHITECTURAL query npm run arela -- route "Show me auth dependencies" # USER query npm run arela -- route "What's my preferred testing framework?" # HISTORICAL query npm run arela -- route "Why did we choose Postgres?" # Verbose mode (shows full context) npm run arela -- route "Continue working on auth" --verbose ``` ## Expected Results ### With OpenAI (FAST - Recommended) - Classification time: ~200ms - Total time: <1s per query - Cost: ~$0.0001 per query ### With Ollama (FREE but slower) - Classification time: 1.3-1.7s - Total time: 2-3s per query - Cost: $0 ### PROCEDURAL - Type: PROCEDURAL - Layers: SESSION, PROJECT, GRAPH - Tokens: ~2000 ### FACTUAL - Type: FACTUAL - Layers: VECTOR - Tokens: ~2000 ### ARCHITECTURAL - Type: ARCHITECTURAL - Layers: GRAPH, VECTOR - Tokens: ~2500 ### USER - Type: USER - Layers: USER, PROJECT - Tokens: ~1300 ### HISTORICAL - Type: HISTORICAL - Layers: GOVERNANCE, PROJECT - Tokens: ~1800 ## What Success Looks Like Classification time: ~200ms (OpenAI) or 1.3-1.7s (Ollama) Total time: <1s (OpenAI) or <3s (Ollama) Correct layer routing for each query type Token estimates match expected ranges No errors or crashes ## Known Issues (Pre-existing) ⚠️ Classifier test may fail if Ollama unavailable ⚠️ better-sqlite3 native module mismatch (environment issue) These don't affect the Meta-RAG functionality. ## After Testing If all tests pass: 1. Commit: `git add -A && git commit -m "feat: Meta-RAG Phase 1 complete - classifier + router + integration"` 2. Update version to v4.1.0 3. Ship it! 🚀