UNPKG

arela

Version:

AI-powered CTO with multi-agent orchestration, code summarization, visual testing (web + mobile) for blazing fast development.

1,122 lines (830 loc) โ€ข 26.3 kB
# Arela v4.3.0 - Quickstart Guide ## โœจ What's New in v4.3.0 ### ๐Ÿง  Learning from Feedback **Arela now learns from your corrections and continuously improves!** Provide feedback on whether retrieved context was helpful, and Arela automatically adjusts its routing weights: ```bash arela feedback --helpful arela feedback --not-helpful --correct-layers vector,graph arela feedback:stats ``` ### ๐Ÿ” Multi-Hop Reasoning **Handle complex queries that require multiple steps!** Arela now breaks down complex queries into sub-queries and executes them intelligently: ```bash arela route "How does auth flow work from login to dashboard?" --multi-hop --verbose ``` ### ๐Ÿš€ Advanced Code Summarization (v4.2.0) **AI-powered code understanding with semantic caching for 5-10x token reduction!** Transform large code files into concise technical summaries: ```bash arela summarize src/auth/auth-service.ts # Output: # Main Responsibility: Handles user authentication with JWT tokens # Public API: authenticateUser, verifyToken, refreshToken # Dependencies: bcrypt, jsonwebtoken, database # Side Effects: Writes to database, generates tokens # Performance: ~50ms avg, 3 DB calls ``` **Key Features:** - ๐ŸŽฏ **AST-based extraction** - Parse code structure with tree-sitter - ๐Ÿค– **LLM synthesis** - Generate summaries using OpenAI/Ollama - ๐Ÿ’พ **Semantic caching** - 70-80% cache hit rate, ignores comments - โšก **Fast** - <3s with LLM, <100ms on cache hit - ๐Ÿ’ฐ **Cost-effective** - ~$0.0001 per summary - ๐Ÿ”„ **Auto-fallback** - OpenAI โ†’ Ollama โ†’ Local deterministic ### ๐Ÿ”„ Auto-Refresh Graph DB **Keep your dependency graph fresh automatically!** Arela now automatically detects when your graph database is stale (>24 hours) and refreshes it in the background on session start. No manual intervention needed! --- ## Installing Arela in an Existing Project ### **Step 1: Install Arela** ```bash npm install -g arela ``` --- ### **Step 2: Initialize in Your Project** Choose your personality and initialize: ```bash cd your-project arela init --personality fun ``` **What this does:** - Creates `.windsurf/rules/` with CTO persona + 11 rules (startup preset) - Creates `.arela/tickets/` directory structure - Sets up agent-specific folders (codex, claude, ollama, etc.) **Choose a preset:** ```bash arela init --preset startup --personality fun # Default: Fast-moving startups (11 rules) arela init --preset enterprise --personality fun # Full rule set (23 rules) arela init --preset solo --personality fun # Lightweight for solo devs (9 rules) ``` **Choose your CLI personality:** ```bash --personality professional # Clean, informative output (default) --personality fun # ๐ŸŽฏ Emojis, encouraging messages --personality dbrand # Savage honesty, direct feedback ``` **Fun Mode Example Output:** ``` ๐ŸŽฏ Arela v3.3.0 - Your AI CTO is here to help! ๐Ÿš€ startup mode activated! ๐ŸŽ‰ Boom! Your AI CTO is ready ๐Ÿ“ฆ Unpacked: - .windsurf/rules/ - arela-cto.md ๐Ÿ“š What's next: 1. Run: arela agents ``` --- ### **Step 3: Configure OpenAI (Optional but Recommended)** For faster, smarter query classification: ```bash # Create .env file echo "OPENAI_API_KEY=sk-proj-your-key-here" >> .env ``` **Get your API key:** https://platform.openai.com/api-keys **Benefits:** - โšก Fast classification (700-1500ms) - ๐Ÿ’ฐ Cheap (~$0.0001 per query) - ๐ŸŽฏ Smart memory routing - ๐Ÿ”„ Auto-fallback to Ollama if unavailable **Without OpenAI:** - Uses Ollama (local, free, private) - Slightly slower (600-2200ms) - Still works great! --- ### **Step 4: Verify Setup** ```bash arela doctor --personality fun ``` **Output (Fun Mode):** ``` ๐Ÿฅ Arela Doctor - Here to make your project awesome! โœ… Project structure is valid! Nailed it! ``` If there are issues: ```bash arela doctor --fix --personality fun ``` --- ### **Step 4: Discover Your AI Agents** ```bash arela agents --verbose --personality fun ``` **Output (Fun Mode):** ``` ๐Ÿ” Discovering your AI team... Found 4 agent(s): โœ… OpenAI (Codex) - Ready to code! Command: codex Cost: $0.002/1k tokens Best for: simple tasks, CRUD operations, boilerplate โœ… Claude (Anthropic) - Your architecture guru! Command: claude Cost: $0.015/1k tokens Best for: complex tasks, refactoring, architecture โœ… Ollama (Local Models) - Offline hero! Command: ollama Cost: $0/1k tokens Best for: offline work, privacy-sensitive โœ… Windsurf (Cascade) - Your IDE buddy! Command: windsurf Type: ide ``` --- ### **Step 5: Build RAG Index (Recommended)** For semantic codebase search - **Arela handles everything automatically!** ```bash arela index --personality fun ``` **Output (Fun Mode with Auto-Installation):** ``` ๐Ÿ“š Building your RAG brain... ๐Ÿ”ง I'll automatically set up Ollama and required models if needed... ๐Ÿ”ง Ollama not found. Installing... ๐Ÿ“ฆ Installing Ollama via Homebrew... โœ… Ollama installed successfully! ๐Ÿ”ง Model 'nomic-embed-text' not found. Pulling... ๐Ÿ“ฆ Pulling nomic-embed-text model... โœ… Model 'nomic-embed-text' pulled successfully! Scanning codebase... Found 247 files to index Indexing: [โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ] 100% (247/247) - 24.5 files/sec ๐ŸŽ‰ Boom! Indexed 247 files (1,234 chunks) Duration: 10.1s Your codebase is now searchable by AI! ``` **What Arela does automatically:** - โœ… Checks if Ollama is installed - โœ… Installs Ollama if missing (macOS via Homebrew, Linux via official script) - โœ… Starts Ollama server in background - โœ… Pulls nomic-embed-text model if needed - โœ… Builds your semantic search index **No manual setup required!** --- ### **Step 6: Ingest Codebase (Recommended)** Build the dependency graph for architecture analysis: ```bash arela ingest codebase --personality fun ``` **Output (Fun Mode):** ``` ๐Ÿ“Š Scanning your codebase... Found 247 files to analyze Ingesting: [โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ] 100% (247/247) - 63.2 files/sec ๐ŸŽ‰ Boom! Ingested 247 files - 1,234 functions - 567 imports - 89 API endpoints Duration: 3.9s Your codebase is now mapped! ``` **What this enables:** - โœ… Vertical slice detection - โœ… Dependency analysis - โœ… Architecture scoring - โœ… API contract generation --- ### **Step 7: Summarize Code (NEW in v4.2.0)** Get AI-powered summaries of any code file: ```bash arela summarize src/auth/auth-service.ts --personality fun ``` **Output (Fun Mode):** ``` ๐Ÿ“ Summarizing src/auth/auth-service.ts... โœจ Summary: Main Responsibility: Handles user authentication with JWT tokens Public API: authenticateUser, verifyToken, refreshToken Dependencies: bcrypt, jsonwebtoken, database Side Effects: Writes to database, generates tokens Performance: ~50ms avg, 3 DB calls ๐Ÿ’พ Cache Stats: New summary, $0.0001 cost โšก Duration: 2.8s ``` **Features:** - ๐ŸŽฏ AST-based extraction (tree-sitter) - ๐Ÿค– LLM synthesis (OpenAI/Ollama) - ๐Ÿ’พ Semantic caching (70-80% hit rate) - โšก Fast (<3s with LLM, <100ms on cache hit) - ๐Ÿ’ฐ Cost-effective (~$0.0001 per summary) **Commands:** ```bash # Summarize any file arela summarize src/your-file.ts # Force re-summarization (skip cache) arela summarize src/your-file.ts --no-cache # JSON output arela summarize src/your-file.ts --output json ``` --- ### **Step 8: Start Using Arela** #### **Option A: Talk to Arela in Windsurf** The CTO persona is now active in Windsurf! Just start chatting: ``` YOU: "Should I use Postgres or MongoDB?" ARELA: "What's your data model? If it's relational, Postgres. If it's document-based, MongoDB. Don't overthink this. *uses arela_search to check your current setup* I see you're already using Prisma with SQL schemas. Why are we even having this conversation? Stick with Postgres." ``` #### **Option B: Create Tickets for Multi-Agent Work** Create a ticket in `.arela/tickets/codex/CODEX-001.md`: ```markdown # CODEX-001: Create Login Component **Agent:** codex **Priority:** high **Complexity:** simple ## Description Build login form with email/password validation ## Tasks - [ ] Email input - [ ] Password input - [ ] Form validation - [ ] Error handling ``` Then run: ```bash arela orchestrate ``` --- ### **Step 9: Improve with Feedback (NEW in v4.3.0)** Help Arela learn and improve routing accuracy over time: ```bash # After running a query arela route "How does authentication work?" # If the context was helpful arela feedback --helpful # If not helpful, provide corrections arela feedback --not-helpful --correct-layers vector,graph --comment "Should use vector search for code examples" # Or correct the query type arela feedback --not-helpful --correct-type FACTUAL --comment "This is a factual question, not procedural" # View learning progress arela feedback:stats ``` **Output (Fun Mode):** ``` ๐Ÿ“Š Learning Statistics Helpful Rate: 85% (17/20 queries) ๐ŸŽ‰ Accuracy Improvement: +18% (over last 20 queries) ๐Ÿ“ˆ Layer Weights: Vector: 1.4 (โ†‘ 40%) ๐Ÿš€ Graph: 1.2 (โ†‘ 20%) ๐Ÿ“Š Project: 1.0 (unchanged) โžก๏ธ Session: 0.8 (โ†“ 20%) ๐Ÿ“‰ Common Mistakes: - PROCEDURAL queries incorrectly routed to User layer (3 times) - FACTUAL queries missing Vector layer (2 times) ๐Ÿ’ก Arela is getting smarter! Keep providing feedback. ``` **How It Works:** 1. **Query Tracking:** Every `arela route` command stores query details in session memory 2. **Feedback Collection:** Use `arela feedback` to mark helpful/not helpful 3. **Weight Adjustment:** Arela adjusts layer weights automatically - Correct layers: +10% weight - Incorrect layers: -10% weight 4. **Continuous Learning:** Accuracy improves with each feedback 5. **Audit Trail:** All feedback stored in Governance layer **Benefits:** - ๐ŸŽฏ **Personalized routing** - Learns your specific patterns - ๐Ÿ“ˆ **Measurable improvement** - Track accuracy gains over time - ๐Ÿ”„ **Automatic optimization** - No manual tuning required - ๐Ÿ“Š **Transparent** - See exactly how weights change - ๐Ÿง  **Team learning** - Shared knowledge across your team **Pro Tips:** - Provide feedback on 20+ queries for best results - Be specific with corrections (use `--correct-layers` and `--correct-type`) - Check `arela feedback:stats` weekly to track improvement - Export feedback data for fine-tuning: `learner.exportForFineTuning()` --- ### **Step 10: Use Multi-Hop for Complex Queries (NEW in v4.3.0)** Handle complex queries that require multiple steps: ```bash # Enable multi-hop reasoning arela route "How does auth flow work from login to dashboard?" --multi-hop --verbose ``` **Output:** ``` ๐Ÿ” Decomposing query... Sub-query 1: "What is the login endpoint?" Sub-query 2: "How is the token generated after login?" Sub-query 3: "How is the session created with the token?" Sub-query 4: "What is the dashboard route?" ๐ŸŽฏ Executing 4 hops (sequential)... Hop 1: Login Endpoint โœ… Found 3 results - src/api/auth/login.ts - src/routes/auth.ts - docs/api/authentication.md Hop 2: Token Generation โœ… Found 2 results - src/auth/jwt.ts - src/utils/token-generator.ts Hop 3: Session Creation โœ… Found 4 results - src/session/session-manager.ts - src/middleware/session.ts - src/database/session-store.ts Hop 4: Dashboard Route โœ… Found 2 results - src/routes/dashboard.ts - src/pages/Dashboard.tsx โœ… Combined 11 results (deduplicated from 15) ๐Ÿ“Š Multi-Hop Stats: Total hops: 4 Total time: 3.2s Results per hop: 2.75 avg Deduplication: 27% reduction ``` **When to Use Multi-Hop:** - Understanding complex flows (auth, payment, data processing) - Tracing multi-step processes - Following dependencies across modules - Analyzing end-to-end user journeys **Execution Strategies:** - **Sequential:** When hops have dependencies (A โ†’ B โ†’ C) - **Parallel:** When hops are independent (A, B, C) - **Hybrid:** Mix of both (A โ†’ [B, C] โ†’ D) --- ### **Step 7: Test Your App Visually** Run your app and let Arela test it like a real user: ```bash # Start your dev server npm run dev # In another terminal, test it arela run web # Or test a specific flow arela run web --flow signup ``` **Create a flow:** ```yaml # .arela/flows/signup.yml name: User Signup Flow steps: - action: navigate target: /signup - action: click selector: button[data-testid="signup-button"] - action: type selector: input[name="email"] value: test@example.com - action: click selector: button[type="submit"] ``` **Output:** ``` ๐ŸŒ Starting web app testing... ๐Ÿงช Running user flow: signup โœ… Navigate to /signup โœ… Click signup button โŒ Email field not visible ๐Ÿ’ก Recommendations: 1. Fix z-index on signup modal ``` --- ### **Step 8: Test Your Mobile App** Test iOS or Android apps with Appium: ```bash # Start your Expo app npx expo start # In another terminal, test it arela run mobile # Or test Android arela run mobile --platform android ``` **Create a mobile flow:** ```yaml # .arela/flows/onboarding.yml name: Mobile Onboarding Flow steps: - action: click selector: ~get-started-button # iOS accessibility ID - action: swipe direction: left - action: click selector: ~next-button - action: screenshot name: onboarding-complete ``` **Output:** ``` ๐Ÿ“ฑ Starting mobile app testing... ๐ŸŽ Launching iOS Simulator (iPhone 15 Pro) ๐Ÿงช Running user flow: onboarding โœ… Tap get-started button โœ… Swipe left โœ… Tap next button โœ… Captured screenshot ๐Ÿ“Š Results: - 4 steps passed ๐Ÿ“ธ Screenshots saved to .arela/screenshots/mobile/ ``` --- ## **Complete Command Reference** ```bash arela agents # Discover AI agents arela agents --verbose # Show costs & capabilities arela init # Initialize (startup preset) arela init --preset enterprise # Full rule set arela init --preset solo # Lightweight arela doctor # Validate project structure arela doctor --fix # Auto-fix issues arela orchestrate # Run all tickets arela orchestrate --parallel # Run in parallel arela orchestrate --agent codex # Run specific agent arela status # Show ticket status arela status --verbose # Detailed view arela index # Build RAG index arela index --parallel # Faster (more memory) arela mcp # Start MCP server (for Windsurf) ``` --- ## **What Gets Created** ``` your-project/ โ”œโ”€โ”€ .windsurf/ โ”‚ โ””โ”€โ”€ rules/ โ”‚ โ”œโ”€โ”€ arela-cto.md # CTO CTO persona โ”‚ โ”œโ”€โ”€ 010-pragmatic-visionary.md โ”‚ โ”œโ”€โ”€ 015-modular-monolith.md โ”‚ โ”œโ”€โ”€ 020-context-integrity.md โ”‚ โ”œโ”€โ”€ 025-two-way-door-decisions.md โ”‚ โ”œโ”€โ”€ 030-ticket-format.md โ”‚ โ”œโ”€โ”€ 060-security-first.md โ”‚ โ”œโ”€โ”€ 070-testing-pyramid.md โ”‚ โ”œโ”€โ”€ 080-observability-minimums.md โ”‚ โ”œโ”€โ”€ 100-multi-agent-orchestration.md โ”‚ โ””โ”€โ”€ 150-investigate-failures.md โ”‚ โ””โ”€โ”€ .arela/ โ”œโ”€โ”€ tickets/ โ”‚ โ”œโ”€โ”€ codex/ # Simple tasks โ”‚ โ”œโ”€โ”€ claude/ # Complex tasks โ”‚ โ”œโ”€โ”€ deepseek/ # Optimization โ”‚ โ”œโ”€โ”€ ollama/ # Offline/free โ”‚ โ””โ”€โ”€ cascade/ # IDE-integrated โ”‚ โ””โ”€โ”€ .rag-index.json # (after running arela index) ``` --- ## **Typical Workflow** ### **Day 1: Setup** ```bash cd your-project arela init --preset startup --personality fun arela doctor --personality fun arela agents --personality fun arela index --personality fun # Auto-installs Ollama + models ``` ### **Daily: Building Features** **Talk to Arela in Windsurf:** ``` YOU: "I need to build a design system with 14 components" ARELA: "Breaking this down: - CLAUDE-001: System architecture ($0.060, 30min) - CODEX-001 to CODEX-014: Components ($0.056, 20min parallel) Total: $0.116, 30 minutes 87% cheaper than all-Claude Should I dispatch to the team?" YOU: "Yes" ARELA: *creates tickets automatically* ``` **Or create tickets manually:** ```bash # Create .arela/tickets/codex/CODEX-001.md arela orchestrate --parallel arela status ``` --- ## **Presets Explained** ### **Startup (Default)** **11 rules** - Fast-moving, pragmatic - Pragmatic Visionary - Modular Monolith - Trunk-Based Dev - Context Integrity - Two-Way Door Decisions - Ticket Format - Security First - Testing Pyramid - Observability Minimums - Multi-Agent Orchestration - Investigate Failures ### **Enterprise** **23 rules** - Comprehensive, quality-focused - All startup rules + - DORA Metrics - Code Review Gates - Technical Debt Management - Blameless Culture - ADR Discipline - Responsible AI - Context Engineering - Performance Budget - Async-First Communication - Automated QA - Current Context Awareness ### **Solo** **9 rules** - Lightweight, essential - Pragmatic Visionary - Modular Monolith - Context Integrity - Two-Way Door Decisions - Security First - Testing Trophy (not Pyramid) - Observability Minimums - Multi-Agent Orchestration - Investigate Failures --- ## **Troubleshooting** ### **"arela: command not found"** ```bash npm install -g arela ``` ### **"Ollama not running" (for indexing)** **No longer an issue!** Arela v3.3.0+ handles this automatically: ```bash arela index # Will install and start Ollama if needed ``` If you prefer manual setup: ```bash # Install Ollama: https://ollama.ai ollama serve ``` ### **"No agents discovered"** Install at least one: - Codex: `npm install -g @openai/codex` - Claude: `npm install -g @anthropic-ai/claude` - Ollama: https://ollama.ai ### **Structure issues** ```bash arela doctor --fix --personality fun ``` --- ## **CLI Personalities** All commands support the `--personality` flag: ### **Professional (default)** ```bash arela init --personality professional ``` Clean, informative output - standard CLI experience ### **Fun** ```bash arela init --personality fun ``` ๐ŸŽฏ Emojis, encouraging messages, "Nailed it!" style ### **DBrand** ```bash arela init --personality dbrand ``` Savage honesty, direct feedback, no-nonsense **Example comparison:** ``` # Professional โœ… Arela initialized successfully! # Fun ๐ŸŽ‰ Boom! Your DBrand CTO is ready # DBrand โœ… Done. Now go build something useful ``` --- ## **NEW in v3.10.0: Quality & Governance** ### **Validate API Contracts with Dredd** Prevent API drift by validating OpenAPI contracts against running servers: ```bash # Validate all contracts arela validate contracts # Validate specific contract arela validate contracts --contract openapi/workout-api.yaml # Custom server URL arela validate contracts --server-url http://localhost:8080 # Watch mode (re-validate on changes) arela validate contracts --watch ``` **What it prevents:** - โœ… API drift between spec and implementation - โœ… Breaking changes shipping to production - โœ… Undocumented endpoints - โœ… Schema mismatches **Example output:** ``` ๐Ÿ” Validating contracts... โœ… openapi/workout-api.yaml GET /api/workouts - PASS POST /api/workouts - PASS GET /api/workouts/:id - PASS โŒ openapi/user-api.yaml POST /api/users - FAIL Expected: { name, email, password } Got: { name, email } Missing required field: password ๐Ÿ’ก Fix the implementation or update the contract ``` ### **Detect API Drift & Manage Versions** Catch breaking changes before they reach production: ```bash # Detect drift in all contracts arela version detect-drift # Detect drift in specific contract arela version detect-drift --contract openapi/workout-api.yaml # Create v2 of a slice when breaking changes needed arela version create workout --version 2 ``` **What it detects:** - ๐Ÿ”ด Removed endpoints (CRITICAL) - ๐Ÿ”ด Removed operations (CRITICAL) - ๐ŸŸ  Missing responses (HIGH) - ๐ŸŸก Schema field changes (MEDIUM) - ๐ŸŸก Type changes (MEDIUM) **Example output:** ``` ๐Ÿšจ Breaking changes detected! openapi/workout-api.yaml: ๐Ÿ”ด CRITICAL: Removed endpoint DELETE /api/workouts/:id ๐ŸŸ  HIGH: Missing 404 response for GET /api/workouts/:id ๐ŸŸก MEDIUM: Field 'duration' changed from number to string ๐Ÿ’ก Create v2: arela version create workout --version 2 ``` ### **Use Workflows in Windsurf** Structured processes for common development tasks: ``` # In Windsurf Cascade /research-driven-decision ``` **What it does:** 1. Identifies decision points 2. Generates structured research prompts 3. Guides you through ChatGPT + Gemini research 4. Reviews findings together 5. Implements with documented rationale 6. Creates memory of the decision **Example use case:** - Choosing between algorithms (Louvain vs Infomap) - Evaluating new technologies - Architectural decisions - Performance-critical choices --- ## **Previous Release: v3.9.0 - Contract-Driven Development** ### **Generate Type-Safe API Clients** Automatically generate TypeScript clients from OpenAPI contracts: ```bash # Generate client from single contract arela generate client --contract openapi/workout-api.yaml # Generate clients for all contracts arela generate client --contract-dir openapi/ --output src/api/ # Preview without writing files arela generate client --contract-dir openapi/ --dry-run # Custom base URL arela generate client --contract openapi/api.yaml --base-url https://api.stride.app ``` **What you get:** - Type-safe TypeScript interfaces - Zod schemas for runtime validation - Axios-based HTTP clients - Bearer token authentication - 4 files per service (types, schemas, client, index) **Example usage:** ```typescript import { WorkoutApiClient } from './api/workout'; const client = new WorkoutApiClient({ baseURL: 'https://api.stride.app', token: user.authToken }); const workouts = await client.getWorkouts(); // Fully typed! ``` **Performance:** - 30 specs โ†’ 120 files in < 5 seconds - Production-ready TypeScript - Full IDE autocomplete --- ## **NEW in v3.8.0: Autonomous Intelligence** ### **Detect Optimal Vertical Slices** Arela now autonomously detects where your vertical slices should be: ```bash # Detect slices in current repo arela detect slices # Multi-repo detection arela detect slices /path/to/mobile /path/to/backend # Filter by quality arela detect slices --min-cohesion 75 # Export results arela detect slices --json slices.json ``` **What you get:** - Louvain algorithm clustering - Cohesion scores (0-100%) - Intelligent slice naming - Actionable recommendations ### **Generate API Contracts** Automatically generate OpenAPI specs and detect schema drift: ```bash # Generate contracts arela generate contracts # Multi-repo (frontend + backend) arela generate contracts /path/to/mobile /path/to/backend # Different formats arela generate contracts --format json arela generate contracts --format yaml # Only show drift issues arela generate contracts --drift-only ``` **What you get:** - OpenAPI 3.0 specifications - Schema drift detection - Frontend/backend matching - Per-slice organization ### **Optimize Test Strategy** Analyze test quality and get recommendations: ```bash # Analyze tests arela analyze tests # Specific directory arela analyze tests --dir src # Export report arela analyze tests --json test-report.json # Verbose output arela analyze tests --verbose ``` **What you get:** - Mock overuse detection - API coverage analysis - Testcontainers recommendations - Slice-aware testing guidance --- ## **NEW in v3.7.0: Language-Agnostic Architecture Analysis** ### **Analyze ANY Codebase in ANY Language** Arela now supports 15+ programming languages for architecture analysis: ```bash # Analyze single repository arela ingest codebase arela analyze architecture # Analyze multiple repositories (e.g., mobile + backend) arela ingest codebase --repo /path/to/mobile arela ingest codebase --repo /path/to/backend arela analyze architecture /path/to/mobile /path/to/backend # Export detailed report arela analyze architecture --json report.json ``` **Supported Languages:** - TypeScript, JavaScript, Python, Go, Rust - Ruby, PHP, Java, C#, C/C++ - Swift, Kotlin, and more! **What you get:** - Architecture type detection (Horizontal vs Vertical) - Coupling/cohesion scores (0-100) - Critical issues identified - VSA migration recommendations - ROI estimates (effort, breakeven, 3-year ROI) ### **Tri-Memory System** Three types of persistent memory for AI agents: ```bash # Initialize all three memory types arela memory init # Semantic search (Vector DB) arela memory query "authentication logic" # Dependency analysis (Graph DB) arela memory impact src/auth/login.ts # Audit trail (Governance Log) arela memory audit --commit abc123 # Health check arela memory status ``` --- ## **NEW in v3.6.0: AI Flow Generator** ### **Generate Test Flows with AI** Let AI read your code and generate comprehensive test flows: ```bash # Generate flows for a specific goal arela generate flows --goal "test signup process" # Specify which files to analyze arela generate flows --goal "test checkout" --files src/checkout.tsx,src/cart.tsx # Use different AI model arela generate flows --goal "test login" --model codex # Faster arela generate flows --goal "test login" --model claude # Better quality (default) ``` **What it generates:** - **Happy path** - Everything works perfectly - **Validation errors** - Form validation, error handling - **Edge cases** - Unusual but valid scenarios **Then run the generated flows:** ```bash arela run web --flow happy-path-signup --analyze ``` ### **Fixed: Ticket Orchestration** Ticket orchestration now works properly! Create tickets and let AI implement them: ```bash # Create a ticket in .arela/tickets/claude/YOUR-TICKET.md # Then run: arela orchestrate --tickets YOUR-TICKET # Check the results: cat logs/claude/YOUR-TICKET-response.txt ``` --- ## **Next Steps** 1. โœ… Install: `npm install -g arela` 2. โœ… Initialize: `arela init --personality fun` 3. โœ… Verify: `arela doctor --personality fun` 4. โœ… Discover agents: `arela agents --personality fun` 5. โœ… Build index: `arela index --personality fun` 6. โœ… Start building with your AI CTO in Windsurf! **Questions?** Check the full docs or ask Arela directly in Windsurf! ๐Ÿš€