arela
Version:
AI-powered CTO with multi-agent orchestration, code summarization, visual testing (web + mobile) for blazing fast development.
1,122 lines (830 loc) โข 26.3 kB
Markdown
# Arela v4.3.0 - Quickstart Guide
## โจ What's New in v4.3.0
### ๐ง Learning from Feedback
**Arela now learns from your corrections and continuously improves!**
Provide feedback on whether retrieved context was helpful, and Arela automatically adjusts its routing weights:
```bash
arela feedback --helpful
arela feedback --not-helpful --correct-layers vector,graph
arela feedback:stats
```
### ๐ Multi-Hop Reasoning
**Handle complex queries that require multiple steps!**
Arela now breaks down complex queries into sub-queries and executes them intelligently:
```bash
arela route "How does auth flow work from login to dashboard?" --multi-hop --verbose
```
### ๐ Advanced Code Summarization (v4.2.0)
**AI-powered code understanding with semantic caching for 5-10x token reduction!**
Transform large code files into concise technical summaries:
```bash
arela summarize src/auth/auth-service.ts
# Output:
# Main Responsibility: Handles user authentication with JWT tokens
# Public API: authenticateUser, verifyToken, refreshToken
# Dependencies: bcrypt, jsonwebtoken, database
# Side Effects: Writes to database, generates tokens
# Performance: ~50ms avg, 3 DB calls
```
**Key Features:**
- ๐ฏ **AST-based extraction** - Parse code structure with tree-sitter
- ๐ค **LLM synthesis** - Generate summaries using OpenAI/Ollama
- ๐พ **Semantic caching** - 70-80% cache hit rate, ignores comments
- โก **Fast** - <3s with LLM, <100ms on cache hit
- ๐ฐ **Cost-effective** - ~$0.0001 per summary
- ๐ **Auto-fallback** - OpenAI โ Ollama โ Local deterministic
### ๐ Auto-Refresh Graph DB
**Keep your dependency graph fresh automatically!**
Arela now automatically detects when your graph database is stale (>24 hours) and refreshes it in the background on session start. No manual intervention needed!
## Installing Arela in an Existing Project
### **Step 1: Install Arela**
```bash
npm install -g arela
```
### **Step 2: Initialize in Your Project**
Choose your personality and initialize:
```bash
cd your-project
arela init --personality fun
```
**What this does:**
- Creates `.windsurf/rules/` with CTO persona + 11 rules (startup preset)
- Creates `.arela/tickets/` directory structure
- Sets up agent-specific folders (codex, claude, ollama, etc.)
**Choose a preset:**
```bash
arela init --preset startup --personality fun # Default: Fast-moving startups (11 rules)
arela init --preset enterprise --personality fun # Full rule set (23 rules)
arela init --preset solo --personality fun # Lightweight for solo devs (9 rules)
```
**Choose your CLI personality:**
```bash
--personality professional # Clean, informative output (default)
--personality fun # ๐ฏ Emojis, encouraging messages
--personality dbrand # Savage honesty, direct feedback
```
**Fun Mode Example Output:**
```
๐ฏ Arela v3.3.0 - Your AI CTO is here to help!
๐ startup mode activated!
๐ Boom! Your AI CTO is ready
๐ฆ Unpacked: - .windsurf/rules/
- arela-cto.md
๐ What's next: 1. Run: arela agents
```
### **Step 3: Configure OpenAI (Optional but Recommended)**
For faster, smarter query classification:
```bash
# Create .env file
echo "OPENAI_API_KEY=sk-proj-your-key-here" >> .env
```
**Get your API key:** https://platform.openai.com/api-keys
**Benefits:**
- โก Fast classification (700-1500ms)
- ๐ฐ Cheap (~$0.0001 per query)
- ๐ฏ Smart memory routing
- ๐ Auto-fallback to Ollama if unavailable
**Without OpenAI:**
- Uses Ollama (local, free, private)
- Slightly slower (600-2200ms)
- Still works great!
### **Step 4: Verify Setup**
```bash
arela doctor --personality fun
```
**Output (Fun Mode):**
```
๐ฅ Arela Doctor - Here to make your project awesome!
โ
Project structure is valid! Nailed it!
```
If there are issues:
```bash
arela doctor --fix --personality fun
```
### **Step 4: Discover Your AI Agents**
```bash
arela agents --verbose --personality fun
```
**Output (Fun Mode):**
```
๐ Discovering your AI team...
Found 4 agent(s):
โ
OpenAI (Codex) - Ready to code!
Command: codex
Cost: $0.002/1k tokens
Best for: simple tasks, CRUD operations, boilerplate
โ
Claude (Anthropic) - Your architecture guru!
Command: claude
Cost: $0.015/1k tokens
Best for: complex tasks, refactoring, architecture
โ
Ollama (Local Models) - Offline hero!
Command: ollama
Cost: $0/1k tokens
Best for: offline work, privacy-sensitive
โ
Windsurf (Cascade) - Your IDE buddy!
Command: windsurf
Type: ide
```
### **Step 5: Build RAG Index (Recommended)**
For semantic codebase search - **Arela handles everything automatically!**
```bash
arela index --personality fun
```
**Output (Fun Mode with Auto-Installation):**
```
๐ Building your RAG brain...
๐ง I'll automatically set up Ollama and required models if needed...
๐ง Ollama not found. Installing...
๐ฆ Installing Ollama via Homebrew...
โ
Ollama installed successfully!
๐ง Model 'nomic-embed-text' not found. Pulling...
๐ฆ Pulling nomic-embed-text model...
โ
Model 'nomic-embed-text' pulled successfully!
Scanning codebase...
Found 247 files to index
Indexing: [โโโโโโโโโโโโโโโโโโโโ] 100% (247/247) - 24.5 files/sec
๐ Boom! Indexed 247 files (1,234 chunks)
Duration: 10.1s
Your codebase is now searchable by AI!
```
**What Arela does automatically:**
- โ
Checks if Ollama is installed
- โ
Installs Ollama if missing (macOS via Homebrew, Linux via official script)
- โ
Starts Ollama server in background
- โ
Pulls nomic-embed-text model if needed
- โ
Builds your semantic search index
**No manual setup required!**
### **Step 6: Ingest Codebase (Recommended)**
Build the dependency graph for architecture analysis:
```bash
arela ingest codebase --personality fun
```
**Output (Fun Mode):**
```
๐ Scanning your codebase...
Found 247 files to analyze
Ingesting: [โโโโโโโโโโโโโโโโโโโโ] 100% (247/247) - 63.2 files/sec
๐ Boom! Ingested 247 files
- 1,234 functions
- 567 imports
- 89 API endpoints
Duration: 3.9s
Your codebase is now mapped!
```
**What this enables:**
- โ
Vertical slice detection
- โ
Dependency analysis
- โ
Architecture scoring
- โ
API contract generation
### **Step 7: Summarize Code (NEW in v4.2.0)**
Get AI-powered summaries of any code file:
```bash
arela summarize src/auth/auth-service.ts --personality fun
```
**Output (Fun Mode):**
```
๐ Summarizing src/auth/auth-service.ts...
โจ Summary:
Main Responsibility: Handles user authentication with JWT tokens
Public API: authenticateUser, verifyToken, refreshToken
Dependencies: bcrypt, jsonwebtoken, database
Side Effects: Writes to database, generates tokens
Performance: ~50ms avg, 3 DB calls
๐พ Cache Stats: New summary, $0.0001 cost
โก Duration: 2.8s
```
**Features:**
- ๐ฏ AST-based extraction (tree-sitter)
- ๐ค LLM synthesis (OpenAI/Ollama)
- ๐พ Semantic caching (70-80% hit rate)
- โก Fast (<3s with LLM, <100ms on cache hit)
- ๐ฐ Cost-effective (~$0.0001 per summary)
**Commands:**
```bash
# Summarize any file
arela summarize src/your-file.ts
# Force re-summarization (skip cache)
arela summarize src/your-file.ts --no-cache
# JSON output
arela summarize src/your-file.ts --output json
```
### **Step 8: Start Using Arela**
#### **Option A: Talk to Arela in Windsurf**
The CTO persona is now active in Windsurf! Just start chatting:
```
YOU: "Should I use Postgres or MongoDB?"
ARELA: "What's your data model? If it's relational, Postgres.
If it's document-based, MongoDB. Don't overthink this.
*uses arela_search to check your current setup*
I see you're already using Prisma with SQL schemas. Why are
we even having this conversation? Stick with Postgres."
```
#### **Option B: Create Tickets for Multi-Agent Work**
Create a ticket in `.arela/tickets/codex/CODEX-001.md`:
```markdown
# CODEX-001: Create Login Component
**Agent:** codex
**Priority:** high
**Complexity:** simple
## Description
Build login form with email/password validation
## Tasks
- [ ] Email input
- [ ] Password input
- [ ] Form validation
- [ ] Error handling
```
Then run:
```bash
arela orchestrate
```
### **Step 9: Improve with Feedback (NEW in v4.3.0)**
Help Arela learn and improve routing accuracy over time:
```bash
# After running a query
arela route "How does authentication work?"
# If the context was helpful
arela feedback --helpful
# If not helpful, provide corrections
arela feedback --not-helpful --correct-layers vector,graph --comment "Should use vector search for code examples"
# Or correct the query type
arela feedback --not-helpful --correct-type FACTUAL --comment "This is a factual question, not procedural"
# View learning progress
arela feedback:stats
```
**Output (Fun Mode):**
```
๐ Learning Statistics
Helpful Rate: 85% (17/20 queries) ๐
Accuracy Improvement: +18% (over last 20 queries) ๐
Layer Weights:
Vector: 1.4 (โ 40%) ๐
Graph: 1.2 (โ 20%) ๐
Project: 1.0 (unchanged) โก๏ธ
Session: 0.8 (โ 20%) ๐
Common Mistakes:
- PROCEDURAL queries incorrectly routed to User layer (3 times)
- FACTUAL queries missing Vector layer (2 times)
๐ก Arela is getting smarter! Keep providing feedback.
```
**How It Works:**
1. **Query Tracking:** Every `arela route` command stores query details in session memory
2. **Feedback Collection:** Use `arela feedback` to mark helpful/not helpful
3. **Weight Adjustment:** Arela adjusts layer weights automatically
- Correct layers: +10% weight
- Incorrect layers: -10% weight
4. **Continuous Learning:** Accuracy improves with each feedback
5. **Audit Trail:** All feedback stored in Governance layer
**Benefits:**
- ๐ฏ **Personalized routing** - Learns your specific patterns
- ๐ **Measurable improvement** - Track accuracy gains over time
- ๐ **Automatic optimization** - No manual tuning required
- ๐ **Transparent** - See exactly how weights change
- ๐ง **Team learning** - Shared knowledge across your team
**Pro Tips:**
- Provide feedback on 20+ queries for best results
- Be specific with corrections (use `--correct-layers` and `--correct-type`)
- Check `arela feedback:stats` weekly to track improvement
- Export feedback data for fine-tuning: `learner.exportForFineTuning()`
### **Step 10: Use Multi-Hop for Complex Queries (NEW in v4.3.0)**
Handle complex queries that require multiple steps:
```bash
# Enable multi-hop reasoning
arela route "How does auth flow work from login to dashboard?" --multi-hop --verbose
```
**Output:**
```
๐ Decomposing query...
Sub-query 1: "What is the login endpoint?"
Sub-query 2: "How is the token generated after login?"
Sub-query 3: "How is the session created with the token?"
Sub-query 4: "What is the dashboard route?"
๐ฏ Executing 4 hops (sequential)...
Hop 1: Login Endpoint
โ
Found 3 results
- src/api/auth/login.ts
- src/routes/auth.ts
- docs/api/authentication.md
Hop 2: Token Generation
โ
Found 2 results
- src/auth/jwt.ts
- src/utils/token-generator.ts
Hop 3: Session Creation
โ
Found 4 results
- src/session/session-manager.ts
- src/middleware/session.ts
- src/database/session-store.ts
Hop 4: Dashboard Route
โ
Found 2 results
- src/routes/dashboard.ts
- src/pages/Dashboard.tsx
โ
Combined 11 results (deduplicated from 15)
๐ Multi-Hop Stats:
Total hops: 4
Total time: 3.2s
Results per hop: 2.75 avg
Deduplication: 27% reduction
```
**When to Use Multi-Hop:**
- Understanding complex flows (auth, payment, data processing)
- Tracing multi-step processes
- Following dependencies across modules
- Analyzing end-to-end user journeys
**Execution Strategies:**
- **Sequential:** When hops have dependencies (A โ B โ C)
- **Parallel:** When hops are independent (A, B, C)
- **Hybrid:** Mix of both (A โ [B, C] โ D)
### **Step 7: Test Your App Visually**
Run your app and let Arela test it like a real user:
```bash
# Start your dev server
npm run dev
# In another terminal, test it
arela run web
# Or test a specific flow
arela run web --flow signup
```
**Create a flow:**
```yaml
# .arela/flows/signup.yml
name: User Signup Flow
steps:
- action: navigate
target: /signup
- action: click
selector: button[data-testid="signup-button"]
- action: type
selector: input[name="email"]
value: test@example.com
- action: click
selector: button[type="submit"]
```
**Output:**
```
๐ Starting web app testing...
๐งช Running user flow: signup
โ
Navigate to /signup
โ
Click signup button
โ Email field not visible
๐ก Recommendations:
1. Fix z-index on signup modal
```
### **Step 8: Test Your Mobile App**
Test iOS or Android apps with Appium:
```bash
# Start your Expo app
npx expo start
# In another terminal, test it
arela run mobile
# Or test Android
arela run mobile --platform android
```
**Create a mobile flow:**
```yaml
# .arela/flows/onboarding.yml
name: Mobile Onboarding Flow
steps:
- action: click
selector: ~get-started-button # iOS accessibility ID
- action: swipe
direction: left
- action: click
selector: ~next-button
- action: screenshot
name: onboarding-complete
```
**Output:**
```
๐ฑ Starting mobile app testing...
๐ Launching iOS Simulator (iPhone 15 Pro)
๐งช Running user flow: onboarding
โ
Tap get-started button
โ
Swipe left
โ
Tap next button
โ
Captured screenshot
๐ Results:
- 4 steps passed
๐ธ Screenshots saved to .arela/screenshots/mobile/
```
## **Complete Command Reference**
```bash
arela agents # Discover AI agents
arela agents --verbose # Show costs & capabilities
arela init # Initialize (startup preset)
arela init --preset enterprise # Full rule set
arela init --preset solo # Lightweight
arela doctor # Validate project structure
arela doctor --fix # Auto-fix issues
arela orchestrate # Run all tickets
arela orchestrate --parallel # Run in parallel
arela orchestrate --agent codex # Run specific agent
arela status # Show ticket status
arela status --verbose # Detailed view
arela index # Build RAG index
arela index --parallel # Faster (more memory)
arela mcp # Start MCP server (for Windsurf)
```
## **What Gets Created**
```
your-project/
โโโ .windsurf/
โ โโโ rules/
โ โโโ arela-cto.md # CTO CTO persona
โ โโโ 010-pragmatic-visionary.md
โ โโโ 015-modular-monolith.md
โ โโโ 020-context-integrity.md
โ โโโ 025-two-way-door-decisions.md
โ โโโ 030-ticket-format.md
โ โโโ 060-security-first.md
โ โโโ 070-testing-pyramid.md
โ โโโ 080-observability-minimums.md
โ โโโ 100-multi-agent-orchestration.md
โ โโโ 150-investigate-failures.md
โ
โโโ .arela/
โโโ tickets/
โ โโโ codex/ # Simple tasks
โ โโโ claude/ # Complex tasks
โ โโโ deepseek/ # Optimization
โ โโโ ollama/ # Offline/free
โ โโโ cascade/ # IDE-integrated
โ
โโโ .rag-index.json # (after running arela index)
```
## **Typical Workflow**
### **Day 1: Setup**
```bash
cd your-project
arela init --preset startup --personality fun
arela doctor --personality fun
arela agents --personality fun
arela index --personality fun # Auto-installs Ollama + models
```
### **Daily: Building Features**
**Talk to Arela in Windsurf:**
```
YOU: "I need to build a design system with 14 components"
ARELA: "Breaking this down:
- CLAUDE-001: System architecture ($0.060, 30min)
- CODEX-001 to CODEX-014: Components ($0.056, 20min parallel)
Total: $0.116, 30 minutes
87% cheaper than all-Claude
Should I dispatch to the team?"
YOU: "Yes"
ARELA: *creates tickets automatically*
```
**Or create tickets manually:**
```bash
# Create .arela/tickets/codex/CODEX-001.md
arela orchestrate --parallel
arela status
```
## **Presets Explained**
### **Startup (Default)**
**11 rules** - Fast-moving, pragmatic
- Pragmatic Visionary
- Modular Monolith
- Trunk-Based Dev
- Context Integrity
- Two-Way Door Decisions
- Ticket Format
- Security First
- Testing Pyramid
- Observability Minimums
- Multi-Agent Orchestration
- Investigate Failures
### **Enterprise**
**23 rules** - Comprehensive, quality-focused
- All startup rules +
- DORA Metrics
- Code Review Gates
- Technical Debt Management
- Blameless Culture
- ADR Discipline
- Responsible AI
- Context Engineering
- Performance Budget
- Async-First Communication
- Automated QA
- Current Context Awareness
### **Solo**
**9 rules** - Lightweight, essential
- Pragmatic Visionary
- Modular Monolith
- Context Integrity
- Two-Way Door Decisions
- Security First
- Testing Trophy (not Pyramid)
- Observability Minimums
- Multi-Agent Orchestration
- Investigate Failures
## **Troubleshooting**
### **"arela: command not found"**
```bash
npm install -g arela
```
### **"Ollama not running" (for indexing)**
**No longer an issue!** Arela v3.3.0+ handles this automatically:
```bash
arela index # Will install and start Ollama if needed
```
If you prefer manual setup:
```bash
# Install Ollama: https://ollama.ai
ollama serve
```
### **"No agents discovered"**
Install at least one:
- Codex: `npm install -g @openai/codex`
- Claude: `npm install -g @anthropic-ai/claude`
- Ollama: https://ollama.ai
### **Structure issues**
```bash
arela doctor --fix --personality fun
```
## **CLI Personalities**
All commands support the `--personality` flag:
### **Professional (default)**
```bash
arela init --personality professional
```
Clean, informative output - standard CLI experience
### **Fun**
```bash
arela init --personality fun
```
๐ฏ Emojis, encouraging messages, "Nailed it!" style
### **DBrand**
```bash
arela init --personality dbrand
```
Savage honesty, direct feedback, no-nonsense
**Example comparison:**
```
# Professional
โ
Arela initialized successfully!
# Fun
๐ Boom! Your DBrand CTO is ready
# DBrand
โ
Done. Now go build something useful
```
## **NEW in v3.10.0: Quality & Governance**
### **Validate API Contracts with Dredd**
Prevent API drift by validating OpenAPI contracts against running servers:
```bash
# Validate all contracts
arela validate contracts
# Validate specific contract
arela validate contracts --contract openapi/workout-api.yaml
# Custom server URL
arela validate contracts --server-url http://localhost:8080
# Watch mode (re-validate on changes)
arela validate contracts --watch
```
**What it prevents:**
- โ
API drift between spec and implementation
- โ
Breaking changes shipping to production
- โ
Undocumented endpoints
- โ
Schema mismatches
**Example output:**
```
๐ Validating contracts...
โ
openapi/workout-api.yaml
GET /api/workouts - PASS
POST /api/workouts - PASS
GET /api/workouts/:id - PASS
โ openapi/user-api.yaml
POST /api/users - FAIL
Expected: { name, email, password }
Got: { name, email }
Missing required field: password
๐ก Fix the implementation or update the contract
```
### **Detect API Drift & Manage Versions**
Catch breaking changes before they reach production:
```bash
# Detect drift in all contracts
arela version detect-drift
# Detect drift in specific contract
arela version detect-drift --contract openapi/workout-api.yaml
# Create v2 of a slice when breaking changes needed
arela version create workout --version 2
```
**What it detects:**
- ๐ด Removed endpoints (CRITICAL)
- ๐ด Removed operations (CRITICAL)
- ๐ Missing responses (HIGH)
- ๐ก Schema field changes (MEDIUM)
- ๐ก Type changes (MEDIUM)
**Example output:**
```
๐จ Breaking changes detected!
openapi/workout-api.yaml:
๐ด CRITICAL: Removed endpoint DELETE /api/workouts/:id
๐ HIGH: Missing 404 response for GET /api/workouts/:id
๐ก MEDIUM: Field 'duration' changed from number to string
๐ก Create v2: arela version create workout --version 2
```
### **Use Workflows in Windsurf**
Structured processes for common development tasks:
```
# In Windsurf Cascade
/research-driven-decision
```
**What it does:**
1. Identifies decision points
2. Generates structured research prompts
3. Guides you through ChatGPT + Gemini research
4. Reviews findings together
5. Implements with documented rationale
6. Creates memory of the decision
**Example use case:**
- Choosing between algorithms (Louvain vs Infomap)
- Evaluating new technologies
- Architectural decisions
- Performance-critical choices
## **Previous Release: v3.9.0 - Contract-Driven Development**
### **Generate Type-Safe API Clients**
Automatically generate TypeScript clients from OpenAPI contracts:
```bash
# Generate client from single contract
arela generate client --contract openapi/workout-api.yaml
# Generate clients for all contracts
arela generate client --contract-dir openapi/ --output src/api/
# Preview without writing files
arela generate client --contract-dir openapi/ --dry-run
# Custom base URL
arela generate client --contract openapi/api.yaml --base-url https://api.stride.app
```
**What you get:**
- Type-safe TypeScript interfaces
- Zod schemas for runtime validation
- Axios-based HTTP clients
- Bearer token authentication
- 4 files per service (types, schemas, client, index)
**Example usage:**
```typescript
import { WorkoutApiClient } from './api/workout';
const client = new WorkoutApiClient({
baseURL: 'https://api.stride.app',
token: user.authToken
});
const workouts = await client.getWorkouts(); // Fully typed!
```
**Performance:**
- 30 specs โ 120 files in < 5 seconds
- Production-ready TypeScript
- Full IDE autocomplete
## **NEW in v3.8.0: Autonomous Intelligence**
### **Detect Optimal Vertical Slices**
Arela now autonomously detects where your vertical slices should be:
```bash
# Detect slices in current repo
arela detect slices
# Multi-repo detection
arela detect slices /path/to/mobile /path/to/backend
# Filter by quality
arela detect slices --min-cohesion 75
# Export results
arela detect slices --json slices.json
```
**What you get:**
- Louvain algorithm clustering
- Cohesion scores (0-100%)
- Intelligent slice naming
- Actionable recommendations
### **Generate API Contracts**
Automatically generate OpenAPI specs and detect schema drift:
```bash
# Generate contracts
arela generate contracts
# Multi-repo (frontend + backend)
arela generate contracts /path/to/mobile /path/to/backend
# Different formats
arela generate contracts --format json
arela generate contracts --format yaml
# Only show drift issues
arela generate contracts --drift-only
```
**What you get:**
- OpenAPI 3.0 specifications
- Schema drift detection
- Frontend/backend matching
- Per-slice organization
### **Optimize Test Strategy**
Analyze test quality and get recommendations:
```bash
# Analyze tests
arela analyze tests
# Specific directory
arela analyze tests --dir src
# Export report
arela analyze tests --json test-report.json
# Verbose output
arela analyze tests --verbose
```
**What you get:**
- Mock overuse detection
- API coverage analysis
- Testcontainers recommendations
- Slice-aware testing guidance
## **NEW in v3.7.0: Language-Agnostic Architecture Analysis**
### **Analyze ANY Codebase in ANY Language**
Arela now supports 15+ programming languages for architecture analysis:
```bash
# Analyze single repository
arela ingest codebase
arela analyze architecture
# Analyze multiple repositories (e.g., mobile + backend)
arela ingest codebase --repo /path/to/mobile
arela ingest codebase --repo /path/to/backend
arela analyze architecture /path/to/mobile /path/to/backend
# Export detailed report
arela analyze architecture --json report.json
```
**Supported Languages:**
- TypeScript, JavaScript, Python, Go, Rust
- Ruby, PHP, Java, C#, C/C++
- Swift, Kotlin, and more!
**What you get:**
- Architecture type detection (Horizontal vs Vertical)
- Coupling/cohesion scores (0-100)
- Critical issues identified
- VSA migration recommendations
- ROI estimates (effort, breakeven, 3-year ROI)
### **Tri-Memory System**
Three types of persistent memory for AI agents:
```bash
# Initialize all three memory types
arela memory init
# Semantic search (Vector DB)
arela memory query "authentication logic"
# Dependency analysis (Graph DB)
arela memory impact src/auth/login.ts
# Audit trail (Governance Log)
arela memory audit --commit abc123
# Health check
arela memory status
```
## **NEW in v3.6.0: AI Flow Generator**
### **Generate Test Flows with AI**
Let AI read your code and generate comprehensive test flows:
```bash
# Generate flows for a specific goal
arela generate flows --goal "test signup process"
# Specify which files to analyze
arela generate flows --goal "test checkout" --files src/checkout.tsx,src/cart.tsx
# Use different AI model
arela generate flows --goal "test login" --model codex # Faster
arela generate flows --goal "test login" --model claude # Better quality (default)
```
**What it generates:**
- **Happy path** - Everything works perfectly
- **Validation errors** - Form validation, error handling
- **Edge cases** - Unusual but valid scenarios
**Then run the generated flows:**
```bash
arela run web --flow happy-path-signup --analyze
```
### **Fixed: Ticket Orchestration**
Ticket orchestration now works properly! Create tickets and let AI implement them:
```bash
# Create a ticket in .arela/tickets/claude/YOUR-TICKET.md
# Then run:
arela orchestrate --tickets YOUR-TICKET
# Check the results:
cat logs/claude/YOUR-TICKET-response.txt
```
## **Next Steps**
1. โ
Install: `npm install -g arela`
2. โ
Initialize: `arela init --personality fun`
3. โ
Verify: `arela doctor --personality fun`
4. โ
Discover agents: `arela agents --personality fun`
5. โ
Build index: `arela index --personality fun`
6. โ
Start building with your AI CTO in Windsurf!
**Questions?** Check the full docs or ask Arela directly in Windsurf! ๐