apache-arrow
Version:
Apache Arrow columnar in-memory format
75 lines (74 loc) • 3.34 kB
TypeScript
import * as flatbuffers from 'flatbuffers';
import { Buffer } from './buffer.js';
import { Int } from './int.js';
/**
* ----------------------------------------------------------------------
* EXPERIMENTAL: Data structures for sparse tensors
* Coordinate (COO) format of sparse tensor index.
*
* COO's index list are represented as a NxM matrix,
* where N is the number of non-zero values,
* and M is the number of dimensions of a sparse tensor.
*
* indicesBuffer stores the location and size of the data of this indices
* matrix. The value type and the stride of the indices matrix is
* specified in indicesType and indicesStrides fields.
*
* For example, let X be a 2x3x4x5 tensor, and it has the following
* 6 non-zero values:
* ```text
* X[0, 1, 2, 0] := 1
* X[1, 1, 2, 3] := 2
* X[0, 2, 1, 0] := 3
* X[0, 1, 3, 0] := 4
* X[0, 1, 2, 1] := 5
* X[1, 2, 0, 4] := 6
* ```
* In COO format, the index matrix of X is the following 4x6 matrix:
* ```text
* [[0, 0, 0, 0, 1, 1],
* [1, 1, 1, 2, 1, 2],
* [2, 2, 3, 1, 2, 0],
* [0, 1, 0, 0, 3, 4]]
* ```
* When isCanonical is true, the indices is sorted in lexicographical order
* (row-major order), and it does not have duplicated entries. Otherwise,
* the indices may not be sorted, or may have duplicated entries.
*/
export declare class SparseTensorIndexCOO {
bb: flatbuffers.ByteBuffer | null;
bb_pos: number;
__init(i: number, bb: flatbuffers.ByteBuffer): SparseTensorIndexCOO;
static getRootAsSparseTensorIndexCOO(bb: flatbuffers.ByteBuffer, obj?: SparseTensorIndexCOO): SparseTensorIndexCOO;
static getSizePrefixedRootAsSparseTensorIndexCOO(bb: flatbuffers.ByteBuffer, obj?: SparseTensorIndexCOO): SparseTensorIndexCOO;
/**
* The type of values in indicesBuffer
*/
indicesType(obj?: Int): Int | null;
/**
* Non-negative byte offsets to advance one value cell along each dimension
* If omitted, default to row-major order (C-like).
*/
indicesStrides(index: number): bigint | null;
indicesStridesLength(): number;
/**
* The location and size of the indices matrix's data
*/
indicesBuffer(obj?: Buffer): Buffer | null;
/**
* This flag is true if and only if the indices matrix is sorted in
* row-major order, and does not have duplicated entries.
* This sort order is the same as of Tensorflow's SparseTensor,
* but it is inverse order of SciPy's canonical coo_matrix
* (SciPy employs column-major order for its coo_matrix).
*/
isCanonical(): boolean;
static startSparseTensorIndexCOO(builder: flatbuffers.Builder): void;
static addIndicesType(builder: flatbuffers.Builder, indicesTypeOffset: flatbuffers.Offset): void;
static addIndicesStrides(builder: flatbuffers.Builder, indicesStridesOffset: flatbuffers.Offset): void;
static createIndicesStridesVector(builder: flatbuffers.Builder, data: bigint[]): flatbuffers.Offset;
static startIndicesStridesVector(builder: flatbuffers.Builder, numElems: number): void;
static addIndicesBuffer(builder: flatbuffers.Builder, indicesBufferOffset: flatbuffers.Offset): void;
static addIsCanonical(builder: flatbuffers.Builder, isCanonical: boolean): void;
static endSparseTensorIndexCOO(builder: flatbuffers.Builder): flatbuffers.Offset;
}