UNPKG

antlr4ts

Version:

ANTLR 4 runtime for JavaScript written in Typescript

813 lines 35.9 kB
"use strict"; /*! * Copyright 2016 The ANTLR Project. All rights reserved. * Licensed under the BSD-3-Clause license. See LICENSE file in the project root for license information. */ var __decorate = (this && this.__decorate) || function (decorators, target, key, desc) { var c = arguments.length, r = c < 3 ? target : desc === null ? desc = Object.getOwnPropertyDescriptor(target, key) : desc, d; if (typeof Reflect === "object" && typeof Reflect.decorate === "function") r = Reflect.decorate(decorators, target, key, desc); else for (var i = decorators.length - 1; i >= 0; i--) if (d = decorators[i]) r = (c < 3 ? d(r) : c > 3 ? d(target, key, r) : d(target, key)) || r; return c > 3 && r && Object.defineProperty(target, key, r), r; }; var __param = (this && this.__param) || function (paramIndex, decorator) { return function (target, key) { decorator(target, key, paramIndex); } }; Object.defineProperty(exports, "__esModule", { value: true }); exports.DefaultErrorStrategy = void 0; const ATNState_1 = require("./atn/ATNState"); const ATNStateType_1 = require("./atn/ATNStateType"); const FailedPredicateException_1 = require("./FailedPredicateException"); const InputMismatchException_1 = require("./InputMismatchException"); const IntervalSet_1 = require("./misc/IntervalSet"); const NoViableAltException_1 = require("./NoViableAltException"); const PredictionContext_1 = require("./atn/PredictionContext"); const Token_1 = require("./Token"); const Decorators_1 = require("./Decorators"); /** * This is the default implementation of {@link ANTLRErrorStrategy} used for * error reporting and recovery in ANTLR parsers. */ class DefaultErrorStrategy { constructor() { /** * Indicates whether the error strategy is currently "recovering from an * error". This is used to suppress reporting multiple error messages while * attempting to recover from a detected syntax error. * * @see #inErrorRecoveryMode */ this.errorRecoveryMode = false; /** The index into the input stream where the last error occurred. * This is used to prevent infinite loops where an error is found * but no token is consumed during recovery...another error is found, * ad nauseum. This is a failsafe mechanism to guarantee that at least * one token/tree node is consumed for two errors. */ this.lastErrorIndex = -1; /** * @see #nextTokensContext */ this.nextTokensState = ATNState_1.ATNState.INVALID_STATE_NUMBER; } /** * {@inheritDoc} * * The default implementation simply calls {@link #endErrorCondition} to * ensure that the handler is not in error recovery mode. */ reset(recognizer) { this.endErrorCondition(recognizer); } /** * This method is called to enter error recovery mode when a recognition * exception is reported. * * @param recognizer the parser instance */ beginErrorCondition(recognizer) { this.errorRecoveryMode = true; } /** * {@inheritDoc} */ inErrorRecoveryMode(recognizer) { return this.errorRecoveryMode; } /** * This method is called to leave error recovery mode after recovering from * a recognition exception. * * @param recognizer */ endErrorCondition(recognizer) { this.errorRecoveryMode = false; this.lastErrorStates = undefined; this.lastErrorIndex = -1; } /** * {@inheritDoc} * * The default implementation simply calls {@link #endErrorCondition}. */ reportMatch(recognizer) { this.endErrorCondition(recognizer); } /** * {@inheritDoc} * * The default implementation returns immediately if the handler is already * in error recovery mode. Otherwise, it calls {@link #beginErrorCondition} * and dispatches the reporting task based on the runtime type of `e` * according to the following table. * * * {@link NoViableAltException}: Dispatches the call to * {@link #reportNoViableAlternative} * * {@link InputMismatchException}: Dispatches the call to * {@link #reportInputMismatch} * * {@link FailedPredicateException}: Dispatches the call to * {@link #reportFailedPredicate} * * All other types: calls {@link Parser#notifyErrorListeners} to report * the exception */ reportError(recognizer, e) { // if we've already reported an error and have not matched a token // yet successfully, don't report any errors. if (this.inErrorRecoveryMode(recognizer)) { // System.err.print("[SPURIOUS] "); return; // don't report spurious errors } this.beginErrorCondition(recognizer); if (e instanceof NoViableAltException_1.NoViableAltException) { this.reportNoViableAlternative(recognizer, e); } else if (e instanceof InputMismatchException_1.InputMismatchException) { this.reportInputMismatch(recognizer, e); } else if (e instanceof FailedPredicateException_1.FailedPredicateException) { this.reportFailedPredicate(recognizer, e); } else { console.error(`unknown recognition error type: ${e}`); this.notifyErrorListeners(recognizer, e.toString(), e); } } notifyErrorListeners(recognizer, message, e) { let offendingToken = e.getOffendingToken(recognizer); if (offendingToken === undefined) { // Pass null to notifyErrorListeners so it in turn calls the error listeners with undefined as the offending // token. If we passed undefined, it would instead call the listeners with currentToken from the parser. offendingToken = null; } recognizer.notifyErrorListeners(message, offendingToken, e); } /** * {@inheritDoc} * * The default implementation resynchronizes the parser by consuming tokens * until we find one in the resynchronization set--loosely the set of tokens * that can follow the current rule. */ recover(recognizer, e) { // System.out.println("recover in "+recognizer.getRuleInvocationStack()+ // " index="+recognizer.inputStream.index+ // ", lastErrorIndex="+ // lastErrorIndex+ // ", states="+lastErrorStates); if (this.lastErrorIndex === recognizer.inputStream.index && this.lastErrorStates && this.lastErrorStates.contains(recognizer.state)) { // uh oh, another error at same token index and previously-visited // state in ATN; must be a case where LT(1) is in the recovery // token set so nothing got consumed. Consume a single token // at least to prevent an infinite loop; this is a failsafe. // System.err.println("seen error condition before index="+ // lastErrorIndex+", states="+lastErrorStates); // System.err.println("FAILSAFE consumes "+recognizer.getTokenNames()[recognizer.inputStream.LA(1)]); recognizer.consume(); } this.lastErrorIndex = recognizer.inputStream.index; if (!this.lastErrorStates) { this.lastErrorStates = new IntervalSet_1.IntervalSet(); } this.lastErrorStates.add(recognizer.state); let followSet = this.getErrorRecoverySet(recognizer); this.consumeUntil(recognizer, followSet); } /** * The default implementation of {@link ANTLRErrorStrategy#sync} makes sure * that the current lookahead symbol is consistent with what were expecting * at this point in the ATN. You can call this anytime but ANTLR only * generates code to check before subrules/loops and each iteration. * * Implements Jim Idle's magic sync mechanism in closures and optional * subrules. E.g., * * ```antlr * a : sync ( stuff sync )* ; * sync : {consume to what can follow sync} ; * ``` * * At the start of a sub rule upon error, {@link #sync} performs single * token deletion, if possible. If it can't do that, it bails on the current * rule and uses the default error recovery, which consumes until the * resynchronization set of the current rule. * * If the sub rule is optional (`(...)?`, `(...)*`, or block * with an empty alternative), then the expected set includes what follows * the subrule. * * During loop iteration, it consumes until it sees a token that can start a * sub rule or what follows loop. Yes, that is pretty aggressive. We opt to * stay in the loop as long as possible. * * **ORIGINS** * * Previous versions of ANTLR did a poor job of their recovery within loops. * A single mismatch token or missing token would force the parser to bail * out of the entire rules surrounding the loop. So, for rule * * ```antlr * classDef : 'class' ID '{' member* '}' * ``` * * input with an extra token between members would force the parser to * consume until it found the next class definition rather than the next * member definition of the current class. * * This functionality cost a little bit of effort because the parser has to * compare token set at the start of the loop and at each iteration. If for * some reason speed is suffering for you, you can turn off this * functionality by simply overriding this method as a blank { }. */ sync(recognizer) { let s = recognizer.interpreter.atn.states[recognizer.state]; // System.err.println("sync @ "+s.stateNumber+"="+s.getClass().getSimpleName()); // If already recovering, don't try to sync if (this.inErrorRecoveryMode(recognizer)) { return; } let tokens = recognizer.inputStream; let la = tokens.LA(1); // try cheaper subset first; might get lucky. seems to shave a wee bit off let nextTokens = recognizer.atn.nextTokens(s); if (nextTokens.contains(la)) { // We are sure the token matches this.nextTokensContext = undefined; this.nextTokensState = ATNState_1.ATNState.INVALID_STATE_NUMBER; return; } if (nextTokens.contains(Token_1.Token.EPSILON)) { if (this.nextTokensContext === undefined) { // It's possible the next token won't match; information tracked // by sync is restricted for performance. this.nextTokensContext = recognizer.context; this.nextTokensState = recognizer.state; } return; } switch (s.stateType) { case ATNStateType_1.ATNStateType.BLOCK_START: case ATNStateType_1.ATNStateType.STAR_BLOCK_START: case ATNStateType_1.ATNStateType.PLUS_BLOCK_START: case ATNStateType_1.ATNStateType.STAR_LOOP_ENTRY: // report error and recover if possible if (this.singleTokenDeletion(recognizer)) { return; } throw new InputMismatchException_1.InputMismatchException(recognizer); case ATNStateType_1.ATNStateType.PLUS_LOOP_BACK: case ATNStateType_1.ATNStateType.STAR_LOOP_BACK: // System.err.println("at loop back: "+s.getClass().getSimpleName()); this.reportUnwantedToken(recognizer); let expecting = recognizer.getExpectedTokens(); let whatFollowsLoopIterationOrRule = expecting.or(this.getErrorRecoverySet(recognizer)); this.consumeUntil(recognizer, whatFollowsLoopIterationOrRule); break; default: // do nothing if we can't identify the exact kind of ATN state break; } } /** * This is called by {@link #reportError} when the exception is a * {@link NoViableAltException}. * * @see #reportError * * @param recognizer the parser instance * @param e the recognition exception */ reportNoViableAlternative(recognizer, e) { let tokens = recognizer.inputStream; let input; if (tokens) { if (e.startToken.type === Token_1.Token.EOF) { input = "<EOF>"; } else { input = tokens.getTextFromRange(e.startToken, e.getOffendingToken()); } } else { input = "<unknown input>"; } let msg = "no viable alternative at input " + this.escapeWSAndQuote(input); this.notifyErrorListeners(recognizer, msg, e); } /** * This is called by {@link #reportError} when the exception is an * {@link InputMismatchException}. * * @see #reportError * * @param recognizer the parser instance * @param e the recognition exception */ reportInputMismatch(recognizer, e) { let expected = e.expectedTokens; let expectedString = expected ? expected.toStringVocabulary(recognizer.vocabulary) : ""; let msg = "mismatched input " + this.getTokenErrorDisplay(e.getOffendingToken(recognizer)) + " expecting " + expectedString; this.notifyErrorListeners(recognizer, msg, e); } /** * This is called by {@link #reportError} when the exception is a * {@link FailedPredicateException}. * * @see #reportError * * @param recognizer the parser instance * @param e the recognition exception */ reportFailedPredicate(recognizer, e) { let ruleName = recognizer.ruleNames[recognizer.context.ruleIndex]; let msg = "rule " + ruleName + " " + e.message; this.notifyErrorListeners(recognizer, msg, e); } /** * This method is called to report a syntax error which requires the removal * of a token from the input stream. At the time this method is called, the * erroneous symbol is current `LT(1)` symbol and has not yet been * removed from the input stream. When this method returns, * `recognizer` is in error recovery mode. * * This method is called when {@link #singleTokenDeletion} identifies * single-token deletion as a viable recovery strategy for a mismatched * input error. * * The default implementation simply returns if the handler is already in * error recovery mode. Otherwise, it calls {@link #beginErrorCondition} to * enter error recovery mode, followed by calling * {@link Parser#notifyErrorListeners}. * * @param recognizer the parser instance */ reportUnwantedToken(recognizer) { if (this.inErrorRecoveryMode(recognizer)) { return; } this.beginErrorCondition(recognizer); let t = recognizer.currentToken; let tokenName = this.getTokenErrorDisplay(t); let expecting = this.getExpectedTokens(recognizer); let msg = "extraneous input " + tokenName + " expecting " + expecting.toStringVocabulary(recognizer.vocabulary); recognizer.notifyErrorListeners(msg, t, undefined); } /** * This method is called to report a syntax error which requires the * insertion of a missing token into the input stream. At the time this * method is called, the missing token has not yet been inserted. When this * method returns, `recognizer` is in error recovery mode. * * This method is called when {@link #singleTokenInsertion} identifies * single-token insertion as a viable recovery strategy for a mismatched * input error. * * The default implementation simply returns if the handler is already in * error recovery mode. Otherwise, it calls {@link #beginErrorCondition} to * enter error recovery mode, followed by calling * {@link Parser#notifyErrorListeners}. * * @param recognizer the parser instance */ reportMissingToken(recognizer) { if (this.inErrorRecoveryMode(recognizer)) { return; } this.beginErrorCondition(recognizer); let t = recognizer.currentToken; let expecting = this.getExpectedTokens(recognizer); let msg = "missing " + expecting.toStringVocabulary(recognizer.vocabulary) + " at " + this.getTokenErrorDisplay(t); recognizer.notifyErrorListeners(msg, t, undefined); } /** * {@inheritDoc} * * The default implementation attempts to recover from the mismatched input * by using single token insertion and deletion as described below. If the * recovery attempt fails, this method * {@link InputMismatchException}. * * **EXTRA TOKEN** (single token deletion) * * `LA(1)` is not what we are looking for. If `LA(2)` has the * right token, however, then assume `LA(1)` is some extra spurious * token and delete it. Then consume and return the next token (which was * the `LA(2)` token) as the successful result of the match operation. * * This recovery strategy is implemented by {@link #singleTokenDeletion}. * * **MISSING TOKEN** (single token insertion) * * If current token (at `LA(1)`) is consistent with what could come * after the expected `LA(1)` token, then assume the token is missing * and use the parser's {@link TokenFactory} to create it on the fly. The * "insertion" is performed by returning the created token as the successful * result of the match operation. * * This recovery strategy is implemented by {@link #singleTokenInsertion}. * * **EXAMPLE** * * For example, Input `i=(3;` is clearly missing the `')'`. When * the parser returns from the nested call to `expr`, it will have * call chain: * * ``` * stat → expr → atom * ``` * * and it will be trying to match the `')'` at this point in the * derivation: * * ``` * => ID '=' '(' INT ')' ('+' atom)* ';' * ^ * ``` * * The attempt to match `')'` will fail when it sees `';'` and * call {@link #recoverInline}. To recover, it sees that `LA(1)==';'` * is in the set of tokens that can follow the `')'` token reference * in rule `atom`. It can assume that you forgot the `')'`. */ recoverInline(recognizer) { // SINGLE TOKEN DELETION let matchedSymbol = this.singleTokenDeletion(recognizer); if (matchedSymbol) { // we have deleted the extra token. // now, move past ttype token as if all were ok recognizer.consume(); return matchedSymbol; } // SINGLE TOKEN INSERTION if (this.singleTokenInsertion(recognizer)) { return this.getMissingSymbol(recognizer); } // even that didn't work; must throw the exception if (this.nextTokensContext === undefined) { throw new InputMismatchException_1.InputMismatchException(recognizer); } else { throw new InputMismatchException_1.InputMismatchException(recognizer, this.nextTokensState, this.nextTokensContext); } } /** * This method implements the single-token insertion inline error recovery * strategy. It is called by {@link #recoverInline} if the single-token * deletion strategy fails to recover from the mismatched input. If this * method returns `true`, `recognizer` will be in error recovery * mode. * * This method determines whether or not single-token insertion is viable by * checking if the `LA(1)` input symbol could be successfully matched * if it were instead the `LA(2)` symbol. If this method returns * `true`, the caller is responsible for creating and inserting a * token with the correct type to produce this behavior. * * @param recognizer the parser instance * @returns `true` if single-token insertion is a viable recovery * strategy for the current mismatched input, otherwise `false` */ singleTokenInsertion(recognizer) { let currentSymbolType = recognizer.inputStream.LA(1); // if current token is consistent with what could come after current // ATN state, then we know we're missing a token; error recovery // is free to conjure up and insert the missing token let currentState = recognizer.interpreter.atn.states[recognizer.state]; let next = currentState.transition(0).target; let atn = recognizer.interpreter.atn; let expectingAtLL2 = atn.nextTokens(next, PredictionContext_1.PredictionContext.fromRuleContext(atn, recognizer.context)); // console.warn("LT(2) set="+expectingAtLL2.toString(recognizer.getTokenNames())); if (expectingAtLL2.contains(currentSymbolType)) { this.reportMissingToken(recognizer); return true; } return false; } /** * This method implements the single-token deletion inline error recovery * strategy. It is called by {@link #recoverInline} to attempt to recover * from mismatched input. If this method returns `undefined`, the parser and error * handler state will not have changed. If this method returns non-`undefined`, * `recognizer` will *not* be in error recovery mode since the * returned token was a successful match. * * If the single-token deletion is successful, this method calls * {@link #reportUnwantedToken} to report the error, followed by * {@link Parser#consume} to actually "delete" the extraneous token. Then, * before returning {@link #reportMatch} is called to signal a successful * match. * * @param recognizer the parser instance * @returns the successfully matched {@link Token} instance if single-token * deletion successfully recovers from the mismatched input, otherwise * `undefined` */ singleTokenDeletion(recognizer) { let nextTokenType = recognizer.inputStream.LA(2); let expecting = this.getExpectedTokens(recognizer); if (expecting.contains(nextTokenType)) { this.reportUnwantedToken(recognizer); /* System.err.println("recoverFromMismatchedToken deleting "+ ((TokenStream)recognizer.inputStream).LT(1)+ " since "+((TokenStream)recognizer.inputStream).LT(2)+ " is what we want"); */ recognizer.consume(); // simply delete extra token // we want to return the token we're actually matching let matchedSymbol = recognizer.currentToken; this.reportMatch(recognizer); // we know current token is correct return matchedSymbol; } return undefined; } /** Conjure up a missing token during error recovery. * * The recognizer attempts to recover from single missing * symbols. But, actions might refer to that missing symbol. * For example, x=ID {f($x);}. The action clearly assumes * that there has been an identifier matched previously and that * $x points at that token. If that token is missing, but * the next token in the stream is what we want we assume that * this token is missing and we keep going. Because we * have to return some token to replace the missing token, * we have to conjure one up. This method gives the user control * over the tokens returned for missing tokens. Mostly, * you will want to create something special for identifier * tokens. For literals such as '{' and ',', the default * action in the parser or tree parser works. It simply creates * a CommonToken of the appropriate type. The text will be the token. * If you change what tokens must be created by the lexer, * override this method to create the appropriate tokens. */ getMissingSymbol(recognizer) { let currentSymbol = recognizer.currentToken; let expecting = this.getExpectedTokens(recognizer); let expectedTokenType = Token_1.Token.INVALID_TYPE; if (!expecting.isNil) { // get any element expectedTokenType = expecting.minElement; } let tokenText; if (expectedTokenType === Token_1.Token.EOF) { tokenText = "<missing EOF>"; } else { tokenText = "<missing " + recognizer.vocabulary.getDisplayName(expectedTokenType) + ">"; } let current = currentSymbol; let lookback = recognizer.inputStream.tryLT(-1); if (current.type === Token_1.Token.EOF && lookback != null) { current = lookback; } return this.constructToken(recognizer.inputStream.tokenSource, expectedTokenType, tokenText, current); } constructToken(tokenSource, expectedTokenType, tokenText, current) { let factory = tokenSource.tokenFactory; let x = current.tokenSource; let stream = x ? x.inputStream : undefined; return factory.create({ source: tokenSource, stream }, expectedTokenType, tokenText, Token_1.Token.DEFAULT_CHANNEL, -1, -1, current.line, current.charPositionInLine); } getExpectedTokens(recognizer) { return recognizer.getExpectedTokens(); } /** How should a token be displayed in an error message? The default * is to display just the text, but during development you might * want to have a lot of information spit out. Override in that case * to use t.toString() (which, for CommonToken, dumps everything about * the token). This is better than forcing you to override a method in * your token objects because you don't have to go modify your lexer * so that it creates a new Java type. */ getTokenErrorDisplay(t) { if (!t) { return "<no token>"; } let s = this.getSymbolText(t); if (!s) { if (this.getSymbolType(t) === Token_1.Token.EOF) { s = "<EOF>"; } else { s = `<${this.getSymbolType(t)}>`; } } return this.escapeWSAndQuote(s); } getSymbolText(symbol) { return symbol.text; } getSymbolType(symbol) { return symbol.type; } escapeWSAndQuote(s) { // if ( s==null ) return s; s = s.replace("\n", "\\n"); s = s.replace("\r", "\\r"); s = s.replace("\t", "\\t"); return "'" + s + "'"; } /* Compute the error recovery set for the current rule. During * rule invocation, the parser pushes the set of tokens that can * follow that rule reference on the stack; this amounts to * computing FIRST of what follows the rule reference in the * enclosing rule. See LinearApproximator.FIRST(). * This local follow set only includes tokens * from within the rule; i.e., the FIRST computation done by * ANTLR stops at the end of a rule. * * EXAMPLE * * When you find a "no viable alt exception", the input is not * consistent with any of the alternatives for rule r. The best * thing to do is to consume tokens until you see something that * can legally follow a call to r *or* any rule that called r. * You don't want the exact set of viable next tokens because the * input might just be missing a token--you might consume the * rest of the input looking for one of the missing tokens. * * Consider grammar: * * a : '[' b ']' * | '(' b ')' * ; * b : c '^' INT ; * c : ID * | INT * ; * * At each rule invocation, the set of tokens that could follow * that rule is pushed on a stack. Here are the various * context-sensitive follow sets: * * FOLLOW(b1_in_a) = FIRST(']') = ']' * FOLLOW(b2_in_a) = FIRST(')') = ')' * FOLLOW(c_in_b) = FIRST('^') = '^' * * Upon erroneous input "[]", the call chain is * * a -> b -> c * * and, hence, the follow context stack is: * * depth follow set start of rule execution * 0 <EOF> a (from main()) * 1 ']' b * 2 '^' c * * Notice that ')' is not included, because b would have to have * been called from a different context in rule a for ')' to be * included. * * For error recovery, we cannot consider FOLLOW(c) * (context-sensitive or otherwise). We need the combined set of * all context-sensitive FOLLOW sets--the set of all tokens that * could follow any reference in the call chain. We need to * resync to one of those tokens. Note that FOLLOW(c)='^' and if * we resync'd to that token, we'd consume until EOF. We need to * sync to context-sensitive FOLLOWs for a, b, and c: {']','^'}. * In this case, for input "[]", LA(1) is ']' and in the set, so we would * not consume anything. After printing an error, rule c would * return normally. Rule b would not find the required '^' though. * At this point, it gets a mismatched token error and * exception (since LA(1) is not in the viable following token * set). The rule exception handler tries to recover, but finds * the same recovery set and doesn't consume anything. Rule b * exits normally returning to rule a. Now it finds the ']' (and * with the successful match exits errorRecovery mode). * * So, you can see that the parser walks up the call chain looking * for the token that was a member of the recovery set. * * Errors are not generated in errorRecovery mode. * * ANTLR's error recovery mechanism is based upon original ideas: * * "Algorithms + Data Structures = Programs" by Niklaus Wirth * * and * * "A note on error recovery in recursive descent parsers": * http://portal.acm.org/citation.cfm?id=947902.947905 * * Later, Josef Grosch had some good ideas: * * "Efficient and Comfortable Error Recovery in Recursive Descent * Parsers": * ftp://www.cocolab.com/products/cocktail/doca4.ps/ell.ps.zip * * Like Grosch I implement context-sensitive FOLLOW sets that are combined * at run-time upon error to avoid overhead during parsing. */ getErrorRecoverySet(recognizer) { let atn = recognizer.interpreter.atn; let ctx = recognizer.context; let recoverSet = new IntervalSet_1.IntervalSet(); while (ctx && ctx.invokingState >= 0) { // compute what follows who invoked us let invokingState = atn.states[ctx.invokingState]; let rt = invokingState.transition(0); let follow = atn.nextTokens(rt.followState); recoverSet.addAll(follow); ctx = ctx._parent; } recoverSet.remove(Token_1.Token.EPSILON); // System.out.println("recover set "+recoverSet.toString(recognizer.getTokenNames())); return recoverSet; } /** Consume tokens until one matches the given token set. */ consumeUntil(recognizer, set) { // System.err.println("consumeUntil("+set.toString(recognizer.getTokenNames())+")"); let ttype = recognizer.inputStream.LA(1); while (ttype !== Token_1.Token.EOF && !set.contains(ttype)) { //System.out.println("consume during recover LA(1)="+getTokenNames()[input.LA(1)]); // recognizer.inputStream.consume(); recognizer.consume(); ttype = recognizer.inputStream.LA(1); } } } __decorate([ Decorators_1.Override ], DefaultErrorStrategy.prototype, "reset", null); __decorate([ __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "beginErrorCondition", null); __decorate([ Decorators_1.Override ], DefaultErrorStrategy.prototype, "inErrorRecoveryMode", null); __decorate([ __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "endErrorCondition", null); __decorate([ Decorators_1.Override ], DefaultErrorStrategy.prototype, "reportMatch", null); __decorate([ Decorators_1.Override ], DefaultErrorStrategy.prototype, "reportError", null); __decorate([ __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "notifyErrorListeners", null); __decorate([ Decorators_1.Override ], DefaultErrorStrategy.prototype, "recover", null); __decorate([ Decorators_1.Override ], DefaultErrorStrategy.prototype, "sync", null); __decorate([ __param(0, Decorators_1.NotNull), __param(1, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "reportNoViableAlternative", null); __decorate([ __param(0, Decorators_1.NotNull), __param(1, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "reportInputMismatch", null); __decorate([ __param(0, Decorators_1.NotNull), __param(1, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "reportFailedPredicate", null); __decorate([ __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "reportUnwantedToken", null); __decorate([ __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "reportMissingToken", null); __decorate([ Decorators_1.Override ], DefaultErrorStrategy.prototype, "recoverInline", null); __decorate([ __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "singleTokenInsertion", null); __decorate([ __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "singleTokenDeletion", null); __decorate([ Decorators_1.NotNull, __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "getMissingSymbol", null); __decorate([ Decorators_1.NotNull, __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "getExpectedTokens", null); __decorate([ __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "getSymbolText", null); __decorate([ __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "getSymbolType", null); __decorate([ Decorators_1.NotNull, __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "escapeWSAndQuote", null); __decorate([ Decorators_1.NotNull, __param(0, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "getErrorRecoverySet", null); __decorate([ __param(0, Decorators_1.NotNull), __param(1, Decorators_1.NotNull) ], DefaultErrorStrategy.prototype, "consumeUntil", null); exports.DefaultErrorStrategy = DefaultErrorStrategy; //# sourceMappingURL=DefaultErrorStrategy.js.map