UNPKG

antarys

Version:

High-performance Node.js client for Antarys vector database with HTTP/2, connection pooling, and intelligent caching

60 lines 2.12 kB
interface WorkerMessage { task: string; data: any; taskId: string; } interface WorkerResponse { taskId: string; result?: any; error?: string; } /** * Optimize vector for JSON serialization and network transmission * Round to reasonable precision to reduce payload size */ declare function optimizeVector(vector: number[]): number[]; /** * Preprocess vectors for optimal serialization */ declare function preprocessVectors(vectors: any[]): any[]; /** * Process query vectors for optimal performance */ declare function processQueryVectors(vectors: number[][]): number[][]; /** * Process batch data with additional optimizations */ declare function processBatch(batch: any[]): any[]; /** * Calculate vector similarity using cosine similarity */ declare function calculateCosineSimilarity(vectorA: number[], vectorB: number[]): number; /** * Batch similarity calculation for local filtering/ranking */ declare function batchSimilarityCalculation(queryVector: number[], targetVectors: number[][]): number[]; /** * Normalize vectors to unit length for cosine similarity optimization */ declare function normalizeVectors(vectors: number[][]): number[][]; /** * Validate vector dimensions against expected dimensions */ declare function validateVectorDimensions(vectors: any[], expectedDimensions: number): { valid: boolean; errors: string[]; }; /** * Convert vectors to Float32Array for better memory efficiency and performance */ declare function convertToFloat32Arrays(vectors: number[][]): Float32Array[]; /** * Compress vectors using simple quantization (for storage optimization) */ declare function quantizeVectors(vectors: number[][], precision?: number): number[][]; /** * Main worker message handler */ declare function handleWorkerMessage(message: WorkerMessage): WorkerResponse; export { optimizeVector, preprocessVectors, processQueryVectors, processBatch, calculateCosineSimilarity, batchSimilarityCalculation, normalizeVectors, validateVectorDimensions, convertToFloat32Arrays, quantizeVectors, handleWorkerMessage }; //# sourceMappingURL=worker.d.ts.map