amazon-cognito-identity-js
Version:
Amazon Cognito Identity Provider JavaScript SDK
800 lines (731 loc) • 19.3 kB
JavaScript
"use strict";
exports.__esModule = true;
// A small implementation of BigInteger based on http://www-cs-students.stanford.edu/~tjw/jsbn/
//
// All public methods have been removed except the following:
// new BigInteger(a, b) (only radix 2, 4, 8, 16 and 32 supported)
// toString (only radix 2, 4, 8, 16 and 32 supported)
// negate
// abs
// compareTo
// bitLength
// mod
// equals
// add
// subtract
// multiply
// divide
// modPow
exports.default = BigInteger;
/*
* Copyright (c) 2003-2005 Tom Wu
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* In addition, the following condition applies:
*
* All redistributions must retain an intact copy of this copyright notice
* and disclaimer.
*/
// (public) Constructor
function BigInteger(a, b) {
if (a != null) this.fromString(a, b);
}
// return new, unset BigInteger
function nbi() {
return new BigInteger(null);
}
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = (canary & 0xffffff) == 0xefcafe;
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n) {
while (--n >= 0) {
var v = x * this[i++] + w[j] + c;
c = Math.floor(v / 0x4000000);
w[j++] = v & 0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n) {
var xl = x & 0x7fff,
xh = x >> 15;
while (--n >= 0) {
var l = this[i] & 0x7fff;
var h = this[i++] >> 15;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
w[j++] = l & 0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n) {
var xl = x & 0x3fff,
xh = x >> 14;
while (--n >= 0) {
var l = this[i] & 0x3fff;
var h = this[i++] >> 14;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
c = (l >> 28) + (m >> 14) + xh * h;
w[j++] = l & 0xfffffff;
}
return c;
}
var inBrowser = typeof navigator !== "undefined";
if (inBrowser && j_lm && navigator.appName == "Microsoft Internet Explorer") {
BigInteger.prototype.am = am2;
dbits = 30;
} else if (inBrowser && j_lm && navigator.appName != "Netscape") {
BigInteger.prototype.am = am1;
dbits = 26;
} else {
// Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = (1 << dbits) - 1;
BigInteger.prototype.DV = 1 << dbits;
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2, BI_FP);
BigInteger.prototype.F1 = BI_FP - dbits;
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr, vv;
rr = "0".charCodeAt(0);
for (vv = 0; vv <= 9; ++vv) {
BI_RC[rr++] = vv;
}rr = "a".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) {
BI_RC[rr++] = vv;
}rr = "A".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) {
BI_RC[rr++] = vv;
}function int2char(n) {
return BI_RM.charAt(n);
}
function intAt(s, i) {
var c = BI_RC[s.charCodeAt(i)];
return c == null ? -1 : c;
}
// (protected) copy this to r
function bnpCopyTo(r) {
for (var i = this.t - 1; i >= 0; --i) {
r[i] = this[i];
}r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1;
this.s = x < 0 ? -1 : 0;
if (x > 0) this[0] = x;else if (x < -1) this[0] = x + this.DV;else this.t = 0;
}
// return bigint initialized to value
function nbv(i) {
var r = nbi();
r.fromInt(i);
return r;
}
// (protected) set from string and radix
function bnpFromString(s, b) {
var k;
if (b == 16) k = 4;else if (b == 8) k = 3;else if (b == 2) k = 1;else if (b == 32) k = 5;else if (b == 4) k = 2;else throw new Error("Only radix 2, 4, 8, 16, 32 are supported");
this.t = 0;
this.s = 0;
var i = s.length,
mi = false,
sh = 0;
while (--i >= 0) {
var x = intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if (sh == 0) this[this.t++] = x;else if (sh + k > this.DB) {
this[this.t - 1] |= (x & (1 << this.DB - sh) - 1) << sh;
this[this.t++] = x >> this.DB - sh;
} else this[this.t - 1] |= x << sh;
sh += k;
if (sh >= this.DB) sh -= this.DB;
}
this.clamp();
if (mi) BigInteger.ZERO.subTo(this, this);
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s & this.DM;
while (this.t > 0 && this[this.t - 1] == c) {
--this.t;
}
}
// (public) return string representation in given radix
function bnToString(b) {
if (this.s < 0) return "-" + this.negate().toString();
var k;
if (b == 16) k = 4;else if (b == 8) k = 3;else if (b == 2) k = 1;else if (b == 32) k = 5;else if (b == 4) k = 2;else throw new Error("Only radix 2, 4, 8, 16, 32 are supported");
var km = (1 << k) - 1,
d,
m = false,
r = "",
i = this.t;
var p = this.DB - i * this.DB % k;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) > 0) {
m = true;
r = int2char(d);
}
while (i >= 0) {
if (p < k) {
d = (this[i] & (1 << p) - 1) << k - p;
d |= this[--i] >> (p += this.DB - k);
} else {
d = this[i] >> (p -= k) & km;
if (p <= 0) {
p += this.DB;
--i;
}
}
if (d > 0) m = true;
if (m) r += int2char(d);
}
}
return m ? r : "0";
}
// (public) -this
function bnNegate() {
var r = nbi();
BigInteger.ZERO.subTo(this, r);
return r;
}
// (public) |this|
function bnAbs() {
return this.s < 0 ? this.negate() : this;
}
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s - a.s;
if (r != 0) return r;
var i = this.t;
r = i - a.t;
if (r != 0) return this.s < 0 ? -r : r;
while (--i >= 0) {
if ((r = this[i] - a[i]) != 0) return r;
}return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1,
t;
if ((t = x >>> 16) != 0) {
x = t;
r += 16;
}
if ((t = x >> 8) != 0) {
x = t;
r += 8;
}
if ((t = x >> 4) != 0) {
x = t;
r += 4;
}
if ((t = x >> 2) != 0) {
x = t;
r += 2;
}
if ((t = x >> 1) != 0) {
x = t;
r += 1;
}
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if (this.t <= 0) return 0;
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ this.s & this.DM);
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n, r) {
var i;
for (i = this.t - 1; i >= 0; --i) {
r[i + n] = this[i];
}for (i = n - 1; i >= 0; --i) {
r[i] = 0;
}r.t = this.t + n;
r.s = this.s;
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n, r) {
for (var i = n; i < this.t; ++i) {
r[i - n] = this[i];
}r.t = Math.max(this.t - n, 0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n, r) {
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << cbs) - 1;
var ds = Math.floor(n / this.DB),
c = this.s << bs & this.DM,
i;
for (i = this.t - 1; i >= 0; --i) {
r[i + ds + 1] = this[i] >> cbs | c;
c = (this[i] & bm) << bs;
}
for (i = ds - 1; i >= 0; --i) {
r[i] = 0;
}r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
}
// (protected) r = this >> n
function bnpRShiftTo(n, r) {
r.s = this.s;
var ds = Math.floor(n / this.DB);
if (ds >= this.t) {
r.t = 0;
return;
}
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (var i = ds + 1; i < this.t; ++i) {
r[i - ds - 1] |= (this[i] & bm) << cbs;
r[i - ds] = this[i] >> bs;
}
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
r.t = this.t - ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] - a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c -= a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while (i < a.t) {
c -= a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = c < 0 ? -1 : 0;
if (c < -1) r[i++] = this.DV + c;else if (c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a, r) {
var x = this.abs(),
y = a.abs();
var i = x.t;
r.t = i + y.t;
while (--i >= 0) {
r[i] = 0;
}for (i = 0; i < y.t; ++i) {
r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
}r.s = 0;
r.clamp();
if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2 * x.t;
while (--i >= 0) {
r[i] = 0;
}for (i = 0; i < x.t - 1; ++i) {
var c = x.am(i, x[i], r, 2 * i, 0, 1);
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
r[i + x.t] -= x.DV;
r[i + x.t + 1] = 1;
}
}
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m, q, r) {
var pm = m.abs();
if (pm.t <= 0) return;
var pt = this.abs();
if (pt.t < pm.t) {
if (q != null) q.fromInt(0);
if (r != null) this.copyTo(r);
return;
}
if (r == null) r = nbi();
var y = nbi(),
ts = this.s,
ms = m.s;
var nsh = this.DB - nbits(pm[pm.t - 1]);
// normalize modulus
if (nsh > 0) {
pm.lShiftTo(nsh, y);
pt.lShiftTo(nsh, r);
} else {
pm.copyTo(y);
pt.copyTo(r);
}
var ys = y.t;
var y0 = y[ys - 1];
if (y0 == 0) return;
var yt = y0 * (1 << this.F1) + (ys > 1 ? y[ys - 2] >> this.F2 : 0);
var d1 = this.FV / yt,
d2 = (1 << this.F1) / yt,
e = 1 << this.F2;
var i = r.t,
j = i - ys,
t = q == null ? nbi() : q;
y.dlShiftTo(j, t);
if (r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t, r);
}
BigInteger.ONE.dlShiftTo(ys, t);
t.subTo(y, y);
// "negative" y so we can replace sub with am later
while (y.t < ys) {
y[y.t++] = 0;
}while (--j >= 0) {
// Estimate quotient digit
var qd = r[--i] == y0 ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) {
// Try it out
y.dlShiftTo(j, t);
r.subTo(t, r);
while (r[i] < --qd) {
r.subTo(t, r);
}
}
}
if (q != null) {
r.drShiftTo(ys, q);
if (ts != ms) BigInteger.ZERO.subTo(q, q);
}
r.t = ys;
r.clamp();
if (nsh > 0) r.rShiftTo(nsh, r);
// Denormalize remainder
if (ts < 0) BigInteger.ZERO.subTo(r, r);
}
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a, null, r);
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
return r;
}
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if (this.t < 1) return 0;
var x = this[0];
if ((x & 1) == 0) return 0;
var y = x & 3;
// y == 1/x mod 2^2
y = y * (2 - (x & 0xf) * y) & 0xf;
// y == 1/x mod 2^4
y = y * (2 - (x & 0xff) * y) & 0xff;
// y == 1/x mod 2^8
y = y * (2 - ((x & 0xffff) * y & 0xffff)) & 0xffff;
// y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = y * (2 - x * y % this.DV) % this.DV;
// y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return y > 0 ? this.DV - y : -y;
}
function bnEquals(a) {
return this.compareTo(a) == 0;
}
// (protected) r = this + a
function bnpAddTo(a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] + a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c += a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while (i < a.t) {
c += a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = c < 0 ? -1 : 0;
if (c > 0) r[i++] = c;else if (c < -1) r[i++] = this.DV + c;
r.t = i;
r.clamp();
}
// (public) this + a
function bnAdd(a) {
var r = nbi();
this.addTo(a, r);
return r;
}
// (public) this - a
function bnSubtract(a) {
var r = nbi();
this.subTo(a, r);
return r;
}
// (public) this * a
function bnMultiply(a) {
var r = nbi();
this.multiplyTo(a, r);
return r;
}
// (public) this / a
function bnDivide(a) {
var r = nbi();
this.divRemTo(a, r, null);
return r;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp & 0x7fff;
this.mph = this.mp >> 15;
this.um = (1 << m.DB - 15) - 1;
this.mt2 = 2 * m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t, r);
r.divRemTo(this.m, null, r);
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while (x.t <= this.mt2) {
// pad x so am has enough room later
x[x.t++] = 0;
}for (var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i] & 0x7fff;
var u0 = j * this.mpl + ((j * this.mph + (x[i] >> 15) * this.mpl & this.um) << 15) & x.DM;
// use am to combine the multiply-shift-add into one call
j = i + this.m.t;
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
// propagate carry
while (x[j] >= x.DV) {
x[j] -= x.DV;
x[++j]++;
}
}
x.clamp();
x.drShiftTo(this.m.t, x);
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x, r) {
x.squareTo(r);
this.reduce(r);
}
// r = "xy/R mod m"; x,y != r
function montMulTo(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
}
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (public) this^e % m (HAC 14.85)
function bnModPow(e, m, callback) {
var i = e.bitLength(),
k,
r = nbv(1),
z = new Montgomery(m);
if (i <= 0) return r;else if (i < 18) k = 1;else if (i < 48) k = 3;else if (i < 144) k = 4;else if (i < 768) k = 5;else k = 6;
// precomputation
var g = new Array(),
n = 3,
k1 = k - 1,
km = (1 << k) - 1;
g[1] = z.convert(this);
if (k > 1) {
var g2 = nbi();
z.sqrTo(g[1], g2);
while (n <= km) {
g[n] = nbi();
z.mulTo(g2, g[n - 2], g[n]);
n += 2;
}
}
var j = e.t - 1,
w,
is1 = true,
r2 = nbi(),
t;
i = nbits(e[j]) - 1;
while (j >= 0) {
if (i >= k1) w = e[j] >> i - k1 & km;else {
w = (e[j] & (1 << i + 1) - 1) << k1 - i;
if (j > 0) w |= e[j - 1] >> this.DB + i - k1;
}
n = k;
while ((w & 1) == 0) {
w >>= 1;
--n;
}
if ((i -= n) < 0) {
i += this.DB;
--j;
}
if (is1) {
// ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
} else {
while (n > 1) {
z.sqrTo(r, r2);
z.sqrTo(r2, r);
n -= 2;
}
if (n > 0) z.sqrTo(r, r2);else {
t = r;
r = r2;
r2 = t;
}
z.mulTo(r2, g[w], r);
}
while (j >= 0 && (e[j] & 1 << i) == 0) {
z.sqrTo(r, r2);
t = r;
r = r2;
r2 = t;
if (--i < 0) {
i = this.DB - 1;
--j;
}
}
}
var result = z.revert(r);
callback(null, result);
return result;
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.addTo = bnpAddTo;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.equals = bnEquals;
BigInteger.prototype.add = bnAdd;
BigInteger.prototype.subtract = bnSubtract;
BigInteger.prototype.multiply = bnMultiply;
BigInteger.prototype.divide = bnDivide;
BigInteger.prototype.modPow = bnModPow;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);