ali.regenerator
Version:
Source transformer enabling ECMAScript 6 generator functions (yield) in JavaScript-of-today (ES5)
1,147 lines (938 loc) • 31 kB
JavaScript
/**
* Copyright (c) 2014, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* https://raw.github.com/facebook/regenerator/master/LICENSE file. An
* additional grant of patent rights can be found in the PATENTS file in
* the same directory.
*/
var assert = require("assert");
var types = require("recast-harmony").types;
var isArray = types.builtInTypes.array;
var b = types.builders;
var n = types.namedTypes;
var leap = require("./leap");
var meta = require("./meta");
var hasOwn = Object.prototype.hasOwnProperty;
function Emitter(contextId) {
assert.ok(this instanceof Emitter);
n.Identifier.assert(contextId);
Object.defineProperties(this, {
// In order to make sure the context object does not collide with
// anything in the local scope, we might have to rename it, so we
// refer to it symbolically instead of just assuming that it will be
// called "context".
contextId: { value: contextId },
// An append-only list of Statements that grows each time this.emit is
// called.
listing: { value: [] },
// A sparse array whose keys correspond to locations in this.listing
// that have been marked as branch/jump targets.
marked: { value: [true] },
// The last location will be marked when this.getDispatchLoop is
// called.
finalLoc: { value: loc() },
// A list of all leap.TryEntry statements emitted.
tryEntries: { value: [] }
});
// The .leapManager property needs to be defined by a separate
// defineProperties call so that .finalLoc will be visible to the
// leap.LeapManager constructor.
Object.defineProperties(this, {
// Each time we evaluate the body of a loop, we tell this.leapManager
// to enter a nested loop context that determines the meaning of break
// and continue statements therein.
leapManager: { value: new leap.LeapManager(this) }
});
}
var Ep = Emitter.prototype;
exports.Emitter = Emitter;
// Offsets into this.listing that could be used as targets for branches or
// jumps are represented as numeric Literal nodes. This representation has
// the amazingly convenient benefit of allowing the exact value of the
// location to be determined at any time, even after generating code that
// refers to the location.
function loc() {
return b.literal(-1);
}
// Sets the exact value of the given location to the offset of the next
// Statement emitted.
Ep.mark = function(loc) {
n.Literal.assert(loc);
var index = this.listing.length;
if (loc.value === -1) {
loc.value = index;
} else {
// Locations can be marked redundantly, but their values cannot change
// once set the first time.
assert.strictEqual(loc.value, index);
}
this.marked[index] = true;
return loc;
};
Ep.emit = function(node) {
if (n.Expression.check(node))
node = b.expressionStatement(node);
n.Statement.assert(node);
this.listing.push(node);
};
// Shorthand for emitting assignment statements. This will come in handy
// for assignments to temporary variables.
Ep.emitAssign = function(lhs, rhs) {
this.emit(this.assign(lhs, rhs));
return lhs;
};
// Shorthand for an assignment statement.
Ep.assign = function(lhs, rhs) {
return b.expressionStatement(
b.assignmentExpression("=", lhs, rhs));
};
// Convenience function for generating expressions like context.next,
// context.sent, and context.rval.
Ep.contextProperty = function(name) {
return b.memberExpression(
this.contextId,
b.identifier(name),
false
);
};
var volatileContextPropertyNames = {
prev: true,
next: true,
sent: true,
rval: true
};
// A "volatile" context property is a MemberExpression like context.sent
// that should probably be stored in a temporary variable when there's a
// possibility the property will get overwritten.
Ep.isVolatileContextProperty = function(expr) {
if (n.MemberExpression.check(expr)) {
if (expr.computed) {
// If it's a computed property such as context[couldBeAnything],
// assume the worst in terms of volatility.
return true;
}
if (n.Identifier.check(expr.object) &&
n.Identifier.check(expr.property) &&
expr.object.name === this.contextId.name &&
hasOwn.call(volatileContextPropertyNames,
expr.property.name)) {
return true;
}
}
return false;
};
// Shorthand for setting context.rval and jumping to `context.stop()`.
Ep.stop = function(rval) {
if (rval) {
this.setReturnValue(rval);
}
this.jump(this.finalLoc);
};
Ep.setReturnValue = function(valuePath) {
n.Expression.assert(valuePath.value);
this.emitAssign(
this.contextProperty("rval"),
this.explodeExpression(valuePath)
);
};
Ep.clearPendingException = function(tryLoc, assignee) {
n.Literal.assert(tryLoc);
var catchCall = b.callExpression(
this.contextProperty("catch"),
[tryLoc]
);
if (assignee) {
this.emitAssign(assignee, catchCall);
} else {
this.emit(catchCall);
}
};
// Emits code for an unconditional jump to the given location, even if the
// exact value of the location is not yet known.
Ep.jump = function(toLoc) {
this.emitAssign(this.contextProperty("next"), toLoc);
this.emit(b.breakStatement());
};
// Conditional jump.
Ep.jumpIf = function(test, toLoc) {
n.Expression.assert(test);
n.Literal.assert(toLoc);
this.emit(b.ifStatement(
test,
b.blockStatement([
this.assign(this.contextProperty("next"), toLoc),
b.breakStatement()
])
));
};
// Conditional jump, with the condition negated.
Ep.jumpIfNot = function(test, toLoc) {
n.Expression.assert(test);
n.Literal.assert(toLoc);
var negatedTest;
if (n.UnaryExpression.check(test) &&
test.operator === "!") {
// Avoid double negation.
negatedTest = test.argument;
} else {
negatedTest = b.unaryExpression("!", test);
}
this.emit(b.ifStatement(
negatedTest,
b.blockStatement([
this.assign(this.contextProperty("next"), toLoc),
b.breakStatement()
])
));
};
// Returns a unique MemberExpression that can be used to store and
// retrieve temporary values. Since the object of the member expression is
// the context object, which is presumed to coexist peacefully with all
// other local variables, and since we just increment `nextTempId`
// monotonically, uniqueness is assured.
var nextTempId = 0;
Ep.makeTempVar = function() {
return this.contextProperty("t" + nextTempId++);
};
Ep.getContextFunction = function(id) {
return b.functionExpression(
id || null/*Anonymous*/,
[this.contextId],
b.blockStatement([this.getDispatchLoop()]),
false, // Not a generator anymore!
false // Nor an expression.
);
};
// Turns this.listing into a loop of the form
//
// while (1) switch (context.next) {
// case 0:
// ...
// case n:
// return context.stop();
// }
//
// Each marked location in this.listing will correspond to one generated
// case statement.
Ep.getDispatchLoop = function() {
var self = this;
var cases = [];
var current;
// If we encounter a break, continue, or return statement in a switch
// case, we can skip the rest of the statements until the next case.
var alreadyEnded = false;
self.listing.forEach(function(stmt, i) {
if (self.marked.hasOwnProperty(i)) {
cases.push(b.switchCase(
b.literal(i),
current = []));
alreadyEnded = false;
}
if (!alreadyEnded) {
current.push(stmt);
if (isSwitchCaseEnder(stmt))
alreadyEnded = true;
}
});
// Now that we know how many statements there will be in this.listing,
// we can finally resolve this.finalLoc.value.
this.finalLoc.value = this.listing.length;
cases.push(
b.switchCase(this.finalLoc, [
// Intentionally fall through to the "end" case...
]),
// So that the runtime can jump to the final location without having
// to know its offset, we provide the "end" case as a synonym.
b.switchCase(b.literal("end"), [
// This will check/clear both context.thrown and context.rval.
b.returnStatement(
b.callExpression(this.contextProperty("stop"), [])
)
])
);
return b.whileStatement(
b.literal(1),
b.switchStatement(
b.assignmentExpression(
"=",
this.contextProperty("prev"),
this.contextProperty("next")
),
cases
)
);
};
// See comment above re: alreadyEnded.
function isSwitchCaseEnder(stmt) {
return n.BreakStatement.check(stmt)
|| n.ContinueStatement.check(stmt)
|| n.ReturnStatement.check(stmt)
|| n.ThrowStatement.check(stmt);
}
Ep.getTryEntryList = function() {
if (this.tryEntries.length === 0) {
// To avoid adding a needless [] to the majority of wrapGenerator
// argument lists, force the caller to handle this case specially.
return null;
}
var lastLocValue = 0;
return b.arrayExpression(
this.tryEntries.map(function(tryEntry) {
var thisLocValue = tryEntry.firstLoc.value;
assert.ok(thisLocValue >= lastLocValue, "try entries out of order");
lastLocValue = thisLocValue;
var ce = tryEntry.catchEntry;
var fe = tryEntry.finallyEntry;
var triple = [
tryEntry.firstLoc,
// The null here makes a hole in the array.
ce ? ce.firstLoc : null
];
if (fe) {
triple[2] = fe.firstLoc;
}
return b.arrayExpression(triple);
})
);
};
// All side effects must be realized in order.
// If any subexpression harbors a leap, all subexpressions must be
// neutered of side effects.
// No destructive modification of AST nodes.
Ep.explode = function(path, ignoreResult) {
assert.ok(path instanceof types.NodePath);
var node = path.value;
var self = this;
n.Node.assert(node);
if (n.Statement.check(node))
return self.explodeStatement(path);
if (n.Expression.check(node))
return self.explodeExpression(path, ignoreResult);
if (n.Declaration.check(node))
throw getDeclError(node);
switch (node.type) {
case "Program":
return path.get("body").map(
self.explodeStatement,
self
);
case "VariableDeclarator":
throw getDeclError(node);
// These node types should be handled by their parent nodes
// (ObjectExpression, SwitchStatement, and TryStatement, respectively).
case "Property":
case "SwitchCase":
case "CatchClause":
throw new Error(
node.type + " nodes should be handled by their parents");
default:
throw new Error(
"unknown Node of type " +
JSON.stringify(node.type));
}
};
function getDeclError(node) {
return new Error(
"all declarations should have been transformed into " +
"assignments before the Exploder began its work: " +
JSON.stringify(node));
}
Ep.explodeStatement = function(path, labelId) {
assert.ok(path instanceof types.NodePath);
var stmt = path.value;
var self = this;
n.Statement.assert(stmt);
if (labelId) {
n.Identifier.assert(labelId);
} else {
labelId = null;
}
// Explode BlockStatement nodes even if they do not contain a yield,
// because we don't want or need the curly braces.
if (n.BlockStatement.check(stmt)) {
return path.get("body").each(
self.explodeStatement,
self
);
}
if (!meta.containsLeap(stmt)) {
// Technically we should be able to avoid emitting the statement
// altogether if !meta.hasSideEffects(stmt), but that leads to
// confusing generated code (for instance, `while (true) {}` just
// disappears) and is probably a more appropriate job for a dedicated
// dead code elimination pass.
self.emit(stmt);
return;
}
switch (stmt.type) {
case "ExpressionStatement":
self.explodeExpression(path.get("expression"), true);
break;
case "LabeledStatement":
self.explodeStatement(path.get("body"), stmt.label);
break;
case "WhileStatement":
var before = loc();
var after = loc();
self.mark(before);
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
self.leapManager.withEntry(
new leap.LoopEntry(after, before, labelId),
function() { self.explodeStatement(path.get("body")); }
);
self.jump(before);
self.mark(after);
break;
case "DoWhileStatement":
var first = loc();
var test = loc();
var after = loc();
self.mark(first);
self.leapManager.withEntry(
new leap.LoopEntry(after, test, labelId),
function() { self.explode(path.get("body")); }
);
self.mark(test);
self.jumpIf(self.explodeExpression(path.get("test")), first);
self.mark(after);
break;
case "ForStatement":
var head = loc();
var update = loc();
var after = loc();
if (stmt.init) {
// We pass true here to indicate that if stmt.init is an expression
// then we do not care about its result.
self.explode(path.get("init"), true);
}
self.mark(head);
if (stmt.test) {
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
} else {
// No test means continue unconditionally.
}
self.leapManager.withEntry(
new leap.LoopEntry(after, update, labelId),
function() { self.explodeStatement(path.get("body")); }
);
self.mark(update);
if (stmt.update) {
// We pass true here to indicate that if stmt.update is an
// expression then we do not care about its result.
self.explode(path.get("update"), true);
}
self.jump(head);
self.mark(after);
break;
case "ForInStatement":
n.Identifier.assert(stmt.left);
var head = loc();
var after = loc();
var keyIterNextFn = self.makeTempVar();
self.emitAssign(
keyIterNextFn,
b.callExpression(
b.memberExpression(
b.identifier("wrapGenerator"),
b.identifier("keys"),
false
),
[self.explodeExpression(path.get("right"))]
)
);
self.mark(head);
var keyInfoTmpVar = self.makeTempVar();
self.jumpIf(
b.memberExpression(
b.assignmentExpression(
"=",
keyInfoTmpVar,
b.callExpression(keyIterNextFn, [])
),
b.identifier("done"),
false
),
after
);
self.emitAssign(
stmt.left,
b.memberExpression(
keyInfoTmpVar,
b.identifier("value"),
false
)
);
self.leapManager.withEntry(
new leap.LoopEntry(after, head, labelId),
function() { self.explodeStatement(path.get("body")); }
);
self.jump(head);
self.mark(after);
break;
case "BreakStatement":
self.emitAbruptCompletion({
type: "break",
target: self.leapManager.getBreakLoc(stmt.label)
});
break;
case "ContinueStatement":
self.emitAbruptCompletion({
type: "continue",
target: self.leapManager.getContinueLoc(stmt.label)
});
break;
case "SwitchStatement":
// Always save the discriminant into a temporary variable in case the
// test expressions overwrite values like context.sent.
var disc = self.emitAssign(
self.makeTempVar(),
self.explodeExpression(path.get("discriminant"))
);
var after = loc();
var defaultLoc = loc();
var condition = defaultLoc;
var caseLocs = [];
// If there are no cases, .cases might be undefined.
var cases = stmt.cases || [];
for (var i = cases.length - 1; i >= 0; --i) {
var c = cases[i];
n.SwitchCase.assert(c);
if (c.test) {
condition = b.conditionalExpression(
b.binaryExpression("===", disc, c.test),
caseLocs[i] = loc(),
condition
);
} else {
caseLocs[i] = defaultLoc;
}
}
self.jump(self.explodeExpression(
new types.NodePath(condition, path, "discriminant")
));
self.leapManager.withEntry(
new leap.SwitchEntry(after),
function() {
path.get("cases").each(function(casePath) {
var c = casePath.value;
var i = casePath.name;
self.mark(caseLocs[i]);
casePath.get("consequent").each(
self.explodeStatement,
self
);
});
}
);
self.mark(after);
if (defaultLoc.value === -1) {
self.mark(defaultLoc);
assert.strictEqual(after.value, defaultLoc.value);
}
break;
case "IfStatement":
var elseLoc = stmt.alternate && loc();
var after = loc();
self.jumpIfNot(
self.explodeExpression(path.get("test")),
elseLoc || after
);
self.explodeStatement(path.get("consequent"));
if (elseLoc) {
self.jump(after);
self.mark(elseLoc);
self.explodeStatement(path.get("alternate"));
}
self.mark(after);
break;
case "ReturnStatement":
self.emitAbruptCompletion({
type: "return",
value: self.explodeExpression(path.get("argument"))
});
break;
case "WithStatement":
throw new Error(
node.type + " not supported in generator functions.");
case "TryStatement":
var after = loc();
var handler = stmt.handler;
if (!handler && stmt.handlers) {
handler = stmt.handlers[0] || null;
}
var catchLoc = handler && loc();
var catchEntry = catchLoc && new leap.CatchEntry(
catchLoc,
handler.param
);
var finallyLoc = stmt.finalizer && loc();
var finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc);
var tryEntry = new leap.TryEntry(
self.getUnmarkedCurrentLoc(),
catchEntry,
finallyEntry
);
self.tryEntries.push(tryEntry);
self.updateContextPrevLoc(tryEntry.firstLoc);
self.leapManager.withEntry(tryEntry, function() {
self.explodeStatement(path.get("block"));
if (catchLoc) {
if (finallyLoc) {
// If we have both a catch block and a finally block, then
// because we emit the catch block first, we need to jump over
// it to the finally block.
self.jump(finallyLoc);
} else {
// If there is no finally block, then we need to jump over the
// catch block to the fall-through location.
self.jump(after);
}
self.updateContextPrevLoc(self.mark(catchLoc));
var bodyPath = path.get("handler", "body");
var safeParam = self.makeTempVar();
self.clearPendingException(tryEntry.firstLoc, safeParam);
var catchScope = bodyPath.scope;
var catchParamName = handler.param.name;
n.CatchClause.assert(catchScope.node);
assert.strictEqual(catchScope.lookup(catchParamName), catchScope);
types.visit(bodyPath, {
visitIdentifier: function(path) {
if (path.value.name === catchParamName &&
path.scope.lookup(catchParamName) === catchScope) {
return safeParam;
}
this.traverse(path);
}
});
self.leapManager.withEntry(catchEntry, function() {
self.explodeStatement(bodyPath);
});
}
if (finallyLoc) {
self.updateContextPrevLoc(self.mark(finallyLoc));
self.leapManager.withEntry(finallyEntry, function() {
self.explodeStatement(path.get("finalizer"));
});
self.emit(b.callExpression(
self.contextProperty("finish"),
[finallyEntry.firstLoc]
));
}
});
self.mark(after);
break;
case "ThrowStatement":
self.emit(b.throwStatement(
self.explodeExpression(path.get("argument"))
));
break;
default:
throw new Error(
"unknown Statement of type " +
JSON.stringify(stmt.type));
}
};
Ep.emitAbruptCompletion = function(record) {
assert.ok(
isValidCompletion(record),
"invalid completion record: " +
JSON.stringify(record)
);
assert.notStrictEqual(
record.type, "normal",
"normal completions are not abrupt"
);
var abruptArgs = [b.literal(record.type)];
if (record.type === "break" ||
record.type === "continue") {
n.Literal.assert(record.target);
abruptArgs[1] = record.target;
} else if (record.type === "return" ||
record.type === "throw") {
if (record.value) {
n.Expression.assert(record.value);
abruptArgs[1] = record.value;
}
}
this.emit(
b.returnStatement(
b.callExpression(
this.contextProperty("abrupt"),
abruptArgs
)
)
);
};
function isValidCompletion(record) {
var type = record.type;
if (type === "normal") {
return !hasOwn.call(record, "target");
}
if (type === "break" ||
type === "continue") {
return !hasOwn.call(record, "value")
&& n.Literal.check(record.target);
}
if (type === "return" ||
type === "throw") {
return hasOwn.call(record, "value")
&& !hasOwn.call(record, "target");
}
return false;
}
// Not all offsets into emitter.listing are potential jump targets. For
// example, execution typically falls into the beginning of a try block
// without jumping directly there. This method returns the current offset
// without marking it, so that a switch case will not necessarily be
// generated for this offset (I say "not necessarily" because the same
// location might end up being marked in the process of emitting other
// statements). There's no logical harm in marking such locations as jump
// targets, but minimizing the number of switch cases keeps the generated
// code shorter.
Ep.getUnmarkedCurrentLoc = function() {
return b.literal(this.listing.length);
};
// The context.prev property takes the value of context.next whenever we
// evaluate the switch statement discriminant, which is generally good
// enough for tracking the last location we jumped to, but sometimes
// context.prev needs to be more precise, such as when we fall
// successfully out of a try block and into a finally block without
// jumping. This method exists to update context.prev to the freshest
// available location. If we were implementing a full interpreter, we
// would know the location of the current instruction with complete
// precision at all times, but we don't have that luxury here, as it would
// be costly and verbose to set context.prev before every statement.
Ep.updateContextPrevLoc = function(loc) {
if (loc) {
n.Literal.assert(loc);
if (loc.value === -1) {
// If an uninitialized location literal was passed in, set its value
// to the current this.listing.length.
loc.value = this.listing.length;
} else {
// Otherwise assert that the location matches the current offset.
assert.strictEqual(loc.value, this.listing.length);
}
} else {
loc = this.getUnmarkedCurrentLoc();
}
// Make sure context.prev is up to date in case we fell into this try
// statement without jumping to it. TODO Consider avoiding this
// assignment when we know control must have jumped here.
this.emitAssign(this.contextProperty("prev"), loc);
};
Ep.explodeExpression = function(path, ignoreResult) {
assert.ok(path instanceof types.NodePath);
var expr = path.value;
if (expr) {
n.Expression.assert(expr);
} else {
return expr;
}
var self = this;
var result; // Used optionally by several cases below.
function finish(expr) {
n.Expression.assert(expr);
if (ignoreResult) {
self.emit(expr);
} else {
return expr;
}
}
// If the expression does not contain a leap, then we either emit the
// expression as a standalone statement or return it whole.
if (!meta.containsLeap(expr)) {
return finish(expr);
}
// If any child contains a leap (such as a yield or labeled continue or
// break statement), then any sibling subexpressions will almost
// certainly have to be exploded in order to maintain the order of their
// side effects relative to the leaping child(ren).
var hasLeapingChildren = meta.containsLeap.onlyChildren(expr);
// In order to save the rest of explodeExpression from a combinatorial
// trainwreck of special cases, explodeViaTempVar is responsible for
// deciding when a subexpression needs to be "exploded," which is my
// very technical term for emitting the subexpression as an assignment
// to a temporary variable and the substituting the temporary variable
// for the original subexpression. Think of exploded view diagrams, not
// Michael Bay movies. The point of exploding subexpressions is to
// control the precise order in which the generated code realizes the
// side effects of those subexpressions.
function explodeViaTempVar(tempVar, childPath, ignoreChildResult) {
assert.ok(childPath instanceof types.NodePath);
assert.ok(
!ignoreChildResult || !tempVar,
"Ignoring the result of a child expression but forcing it to " +
"be assigned to a temporary variable?"
);
var result = self.explodeExpression(childPath, ignoreChildResult);
if (ignoreChildResult) {
// Side effects already emitted above.
} else if (tempVar || (hasLeapingChildren &&
(self.isVolatileContextProperty(result) ||
meta.hasSideEffects(result)))) {
// If tempVar was provided, then the result will always be assigned
// to it, even if the result does not otherwise need to be assigned
// to a temporary variable. When no tempVar is provided, we have
// the flexibility to decide whether a temporary variable is really
// necessary. In general, temporary assignment is required only
// when some other child contains a leap and the child in question
// is a context property like $ctx.sent that might get overwritten
// or an expression with side effects that need to occur in proper
// sequence relative to the leap.
result = self.emitAssign(
tempVar || self.makeTempVar(),
result
);
}
return result;
}
// If ignoreResult is true, then we must take full responsibility for
// emitting the expression with all its side effects, and we should not
// return a result.
switch (expr.type) {
case "MemberExpression":
return finish(b.memberExpression(
self.explodeExpression(path.get("object")),
expr.computed
? explodeViaTempVar(null, path.get("property"))
: expr.property,
expr.computed
));
case "CallExpression":
var oldCalleePath = path.get("callee");
var newCallee = self.explodeExpression(oldCalleePath);
// If the callee was not previously a MemberExpression, then the
// CallExpression was "unqualified," meaning its `this` object should
// be the global object. If the exploded expression has become a
// MemberExpression, then we need to force it to be unqualified by
// using the (0, object.property)(...) trick; otherwise, it will
// receive the object of the MemberExpression as its `this` object.
if (!n.MemberExpression.check(oldCalleePath.node) &&
n.MemberExpression.check(newCallee)) {
newCallee = b.sequenceExpression([
b.literal(0),
newCallee
]);
}
return finish(b.callExpression(
newCallee,
path.get("arguments").map(function(argPath) {
return explodeViaTempVar(null, argPath);
})
));
case "NewExpression":
return finish(b.newExpression(
explodeViaTempVar(null, path.get("callee")),
path.get("arguments").map(function(argPath) {
return explodeViaTempVar(null, argPath);
})
));
case "ObjectExpression":
return finish(b.objectExpression(
path.get("properties").map(function(propPath) {
return b.property(
propPath.value.kind,
propPath.value.key,
explodeViaTempVar(null, propPath.get("value"))
);
})
));
case "ArrayExpression":
return finish(b.arrayExpression(
path.get("elements").map(function(elemPath) {
return explodeViaTempVar(null, elemPath);
})
));
case "SequenceExpression":
var lastIndex = expr.expressions.length - 1;
path.get("expressions").each(function(exprPath) {
if (exprPath.name === lastIndex) {
result = self.explodeExpression(exprPath, ignoreResult);
} else {
self.explodeExpression(exprPath, true);
}
});
return result;
case "LogicalExpression":
var after = loc();
if (!ignoreResult) {
result = self.makeTempVar();
}
var left = explodeViaTempVar(result, path.get("left"));
if (expr.operator === "&&") {
self.jumpIfNot(left, after);
} else {
assert.strictEqual(expr.operator, "||");
self.jumpIf(left, after);
}
explodeViaTempVar(result, path.get("right"), ignoreResult);
self.mark(after);
return result;
case "ConditionalExpression":
var elseLoc = loc();
var after = loc();
var test = self.explodeExpression(path.get("test"));
self.jumpIfNot(test, elseLoc);
if (!ignoreResult) {
result = self.makeTempVar();
}
explodeViaTempVar(result, path.get("consequent"), ignoreResult);
self.jump(after);
self.mark(elseLoc);
explodeViaTempVar(result, path.get("alternate"), ignoreResult);
self.mark(after);
return result;
case "UnaryExpression":
return finish(b.unaryExpression(
expr.operator,
// Can't (and don't need to) break up the syntax of the argument.
// Think about delete a[b].
self.explodeExpression(path.get("argument")),
!!expr.prefix
));
case "BinaryExpression":
return finish(b.binaryExpression(
expr.operator,
explodeViaTempVar(null, path.get("left")),
explodeViaTempVar(null, path.get("right"))
));
case "AssignmentExpression":
return finish(b.assignmentExpression(
expr.operator,
self.explodeExpression(path.get("left")),
self.explodeExpression(path.get("right"))
));
case "UpdateExpression":
return finish(b.updateExpression(
expr.operator,
self.explodeExpression(path.get("argument")),
expr.prefix
));
case "YieldExpression":
var after = loc();
var arg = expr.argument && self.explodeExpression(path.get("argument"));
if (arg && expr.delegate) {
var result = self.makeTempVar();
self.emit(b.returnStatement(b.callExpression(
self.contextProperty("delegateYield"), [
arg,
b.literal(result.property.name),
after
]
)));
self.mark(after);
return result;
}
self.emitAssign(self.contextProperty("next"), after);
self.emit(b.returnStatement(arg || null));
self.mark(after);
return self.contextProperty("sent");
default:
throw new Error(
"unknown Expression of type " +
JSON.stringify(expr.type));
}
};