algebrite
Version:
Computer Algebra System in Coffeescript
105 lines (87 loc) • 1.86 kB
text/coffeescript
# Tangent function of numerical and symbolic arguments
Eval_tan = ->
push(cadr(p1))
Eval()
tangent()
tangent = ->
save()
yytangent()
restore()
yytangent = ->
n = 0
d = 0.0
p1 = pop()
if (car(p1) == symbol(ARCTAN))
push(cadr(p1))
return
if (isdouble(p1))
d = Math.tan(p1.d)
if (Math.abs(d) < 1e-10)
d = 0.0
push_double(d)
return
# tan function is antisymmetric, tan(-x) = -tan(x)
if (isnegative(p1))
push(p1)
negate()
tangent()
negate()
return
# multiply by 180/pi to go from radians to degrees.
# we go from radians to degrees because it's much
# easier to calculate symbolic results of most (not all) "classic"
# angles (e.g. 30,45,60...) if we calculate the degrees
# and the we do a switch on that.
# Alternatively, we could look at the fraction of pi
# (e.g. 60 degrees is 1/3 pi) but that's more
# convoluted as we'd need to look at both numerator and
# denominator.
push(p1)
push_integer(180)
multiply()
if evaluatingAsFloats
push_double(Math.PI)
else
push_symbol(PI)
divide()
n = pop_integer()
# most "good" (i.e. compact) trigonometric results
# happen for a round number of degrees. There are some exceptions
# though, e.g. 22.5 degrees, which we don't capture here.
if (n < 0 || isNaN(n))
push(symbol(TAN))
push(p1)
list(2)
return
switch (n % 360)
when 0, 180
push_integer(0)
when 30, 210
push_rational(1, 3)
push_integer(3)
push_rational(1, 2)
power()
multiply()
when 150, 330
push_rational(-1, 3)
push_integer(3)
push_rational(1, 2)
power()
multiply()
when 45, 225
push_integer(1)
when 135, 315
push_integer(-1)
when 60, 240
push_integer(3)
push_rational(1, 2)
power()
when 120, 300
push_integer(3)
push_rational(1, 2)
power()
negate()
else
push(symbol(TAN))
push(p1)
list(2)