algebrite
Version:
Computer Algebra System in Coffeescript
171 lines (147 loc) • 3.34 kB
text/coffeescript
# Sine function of numerical and symbolic arguments
Eval_sin = ->
#console.log "sin ---- "
push(cadr(p1))
Eval()
sine()
#console.log "sin end ---- "
sine = ->
#console.log "sine ---- "
save()
p1 = pop()
if (car(p1) == symbol(ADD))
# sin of a sum can be further decomposed into
#sin(alpha+beta) = sin(alpha)*cos(beta)+sin(beta)*cos(alpha)
sine_of_angle_sum()
else
sine_of_angle()
restore()
#console.log "sine end ---- "
# Use angle sum formula for special angles.
#define A p3
#define B p4
# decompose sum sin(alpha+beta) into
# sin(alpha)*cos(beta)+sin(beta)*cos(alpha)
sine_of_angle_sum = ->
#console.log "sin of angle sum ---- "
p2 = cdr(p1)
while (iscons(p2))
p4 = car(p2); # p4 is B
if (isnpi(p4)) # p4 is B
push(p1)
push(p4); # p4 is B
subtract()
p3 = pop(); # p3 is A
push(p3); # p3 is A
sine()
push(p4); # p4 is B
cosine()
multiply()
push(p3); # p3 is A
cosine()
push(p4); # p4 is B
sine()
multiply()
add()
#console.log "sin of angle sum end ---- "
return
p2 = cdr(p2)
sine_of_angle()
#console.log "sin of angle sum end ---- "
sine_of_angle = ->
if (car(p1) == symbol(ARCSIN))
push(cadr(p1))
return
if isdouble(p1)
d = Math.sin(p1.d)
if (Math.abs(d) < 1e-10)
d = 0.0
push_double(d)
return
# sine function is antisymmetric, sin(-x) = -sin(x)
if (isnegative(p1))
push(p1)
negate()
sine()
negate()
return
# sin(arctan(x)) = x / sqrt(1 + x^2)
# see p. 173 of the CRC Handbook of Mathematical Sciences
if (car(p1) == symbol(ARCTAN))
push(cadr(p1))
push_integer(1)
push(cadr(p1))
push_integer(2)
power()
add()
push_rational(-1, 2)
power()
multiply()
return
# multiply by 180/pi to go from radians to degrees.
# we go from radians to degrees because it's much
# easier to calculate symbolic results of most (not all) "classic"
# angles (e.g. 30,45,60...) if we calculate the degrees
# and the we do a switch on that.
# Alternatively, we could look at the fraction of pi
# (e.g. 60 degrees is 1/3 pi) but that's more
# convoluted as we'd need to look at both numerator and
# denominator.
push(p1)
push_integer(180)
multiply()
if evaluatingAsFloats
push_double(Math.PI)
else
push_symbol(PI)
divide()
n = pop_integer()
# most "good" (i.e. compact) trigonometric results
# happen for a round number of degrees. There are some exceptions
# though, e.g. 22.5 degrees, which we don't capture here.
if (n < 0 || isNaN(n))
push(symbol(SIN))
push(p1)
list(2)
return
# values of some famous angles. Many more here:
# https://en.wikipedia.org/wiki/Trigonometric_constants_expressed_in_real_radicals
switch (n % 360)
when 0, 180
push_integer(0)
when 30, 150
push_rational(1, 2)
when 210, 330
push_rational(-1, 2)
when 45, 135
push_rational(1, 2)
push_integer(2)
push_rational(1, 2)
power()
multiply()
when 225, 315
push_rational(-1, 2)
push_integer(2)
push_rational(1, 2)
power()
multiply()
when 60, 120
push_rational(1, 2)
push_integer(3)
push_rational(1, 2)
power()
multiply()
when 240, 300
push_rational(-1, 2)
push_integer(3)
push_rational(1, 2)
power()
multiply()
when 90
push_integer(1)
when 270
push_integer(-1)
else
push(symbol(SIN))
push(p1)
list(2)