algebrite
Version:
Computer Algebra System in Coffeescript
474 lines (391 loc) • 11.7 kB
text/coffeescript
### dot =====================================================================
Tags
----
scripting, JS, internal, treenode, general concept
Parameters
----------
a,b,...
General description
-------------------
The inner (or dot) operator gives products of vectors,
matrices, and tensors.
Note that for Algebrite, the elements of a vector/matrix
can only be scalars. This allows for example to flesh out
matrix multiplication using the usual multiplication.
So for example block-representations are not allowed.
There is an aweful lot of confusion between sw packages on
what dot and inner do.
First off, the "dot" operator is different from the
mathematical notion of dot product, which can be
slightly confusing.
The mathematical notion of dot product is here:
http://mathworld.wolfram.com/DotProduct.html
However, "dot" does that and a bunch of other things,
i.e. in Algebrite
dot/inner does what the dot of Mathematica does, i.e.:
scalar product of vectors:
inner((a, b, c), (x, y, z))
> a x + b y + c z
products of matrices and vectors:
inner(((a, b), (c,d)), (x, y))
> (a x + b y,c x + d y)
inner((x, y), ((a, b), (c,d)))
> (a x + c y,b x + d y)
inner((x, y), ((a, b), (c,d)), (r, s))
> a r x + b s x + c r y + d s y
matrix product:
inner(((a,b),(c,d)),((r,s),(t,u)))
> ((a r + b t,a s + b u),(c r + d t,c s + d u))
the "dot/inner" operator is associative and
distributive but not commutative.
In Mathematica, Inner is a generalisation of Dot where
the user can specify the multiplication and the addition
operators.
But here in Algebrite they do the same thing.
https://reference.wolfram.com/language/ref/Dot.html
https://reference.wolfram.com/language/ref/Inner.html
http://uk.mathworks.com/help/matlab/ref/dot.html
http://uk.mathworks.com/help/matlab/ref/mtimes.html
###
Eval_inner = ->
# if there are more than two arguments then
# reduce it to a more standard version
# of two arguments, which means we need to
# transform the arguments into a tree of
# inner products e.g.
# inner(a,b,c) becomes inner(a,inner(b,c))
# this is so we can get to a standard binary-tree
# version that is simpler to manipulate.
theArguments = []
theArguments.push car(cdr(p1))
secondArgument = car(cdr(cdr(p1)))
if secondArgument == symbol(NIL)
stop("pattern needs at least a template and a transformed version")
moretheArguments = cdr(cdr(p1))
while moretheArguments != symbol(NIL)
theArguments.push car(moretheArguments)
moretheArguments = cdr(moretheArguments)
# make it so e.g. inner(a,b,c) becomes inner(a,inner(b,c))
if theArguments.length > 2
push_symbol(INNER)
push theArguments[theArguments.length-2]
push theArguments[theArguments.length-1]
list(3)
for i in [2...theArguments.length]
push_symbol(INNER)
swap()
push theArguments[theArguments.length-i-1]
swap()
list(3)
p1 = pop()
Eval_inner()
return
# TODO we have to take a look at the whole
# sequence of operands and make simplifications
# on that...
operands = []
get_innerprod_factors(p1, operands)
#console.log "printing operands --------"
#for i in [0...operands.length]
# console.log "operand " + i + " : " + operands[i]
refinedOperands = []
# removing all identity matrices
for i in [0...operands.length]
if operands[i] == symbol(SYMBOL_IDENTITY_MATRIX)
continue
else refinedOperands.push operands[i]
operands = refinedOperands
refinedOperands = []
if operands.length > 1
# removing all consecutive pairs of inverses
# so we can answer that inv(a)·a results in the
# identity matrix. We want to catch symbolic inverses
# not numeric inverses, those will just take care
# of themselves when multiplied
shift = 0
for i in [0...operands.length]
#console.log "comparing if " + operands[i+shift] + " and " + operands[i+shift+1] + " are inverses of each other"
if (i+shift+1) <= (operands.length - 1)
#console.log "isnumerictensor " + operands[i+shift] + " : " + isnumerictensor(operands[i+shift])
#console.log "isnumerictensor " + operands[i+shift+1] + " : " + isnumerictensor(operands[i+shift+1])
if !(isnumerictensor(operands[i+shift]) or isnumerictensor(operands[i+shift+1]))
push operands[i+shift]
Eval()
inv()
push operands[i+shift+1]
Eval()
subtract()
difference = pop()
#console.log "result: " + difference
if (iszero(difference))
shift+=1
else
refinedOperands.push operands[i+shift]
else
refinedOperands.push operands[i+shift]
else
break
#console.log "i: " + i + " shift: " + shift + " operands.length: " + operands.length
if i+shift == operands.length - 2
#console.log "adding last operand 2 "
refinedOperands.push operands[operands.length-1]
if i+shift >= operands.length - 1
break
operands = refinedOperands
#console.log "refined operands --------"
#for i in [0...refinedOperands.length]
# console.log "refined operand " + i + " : " + refinedOperands[i]
#console.log "stack[tos-1]: " + stack[tos-1]
# now rebuild the arguments, just using the
# refined operands
push symbol(INNER)
#console.log "rebuilding the argument ----"
if operands.length > 0
for i in [0...operands.length]
#console.log "pushing " + operands[i]
push operands[i]
else
pop()
push symbol(SYMBOL_IDENTITY_MATRIX)
return
#console.log "list(operands.length): " + (operands.length+1)
list(operands.length + 1)
p1 = pop()
p1 = cdr(p1)
push(car(p1))
Eval()
p1 = cdr(p1)
while (iscons(p1))
push(car(p1))
Eval()
inner()
p1 = cdr(p1)
# inner definition
inner = ->
save()
p2 = pop()
p1 = pop()
# more in general, when a and b are scalars,
# inner(a*M1, b*M2) is equal to
# a*b*inner(M1,M2), but of course we can only
# "bring out" in a and b the scalars, because
# it's the only commutative part.
# that's going to be trickier to do in general
# but let's start with just the signs.
if isnegativeterm(p2) and isnegativeterm(p1)
push p2
negate()
p2 = pop()
push p1
negate()
p1 = pop()
# since inner is associative,
# put it in a canonical form i.e.
# inner(inner(a,b),c) ->
# inner(a,inner(b,c))
# so that we can recognise when they
# are equal.
if isinnerordot(p1)
arg1 = car(cdr(p1)) #a
arg2 = car(cdr(cdr(p1))) #b
arg3 = p2
p1 = arg1
push arg2
push arg3
inner()
p2 = pop()
# Check if one of the operands is the identity matrix
# we could maybe use Eval_testeq here but
# this seems to suffice?
if p1 == symbol(SYMBOL_IDENTITY_MATRIX)
push p2
restore()
return
else if p2 == symbol(SYMBOL_IDENTITY_MATRIX)
push p1
restore()
return
if (istensor(p1) && istensor(p2))
inner_f()
else
# simple check if the two consecutive elements are one the
# (symbolic) inv of the other. If they are, the answer is
# the identity matrix
if !(isnumerictensor(p1) or isnumerictensor(p2))
push p1
push p2
inv()
subtract()
subtractionResult = pop()
if (iszero(subtractionResult))
push_symbol(SYMBOL_IDENTITY_MATRIX)
restore()
return
# if either operand is a sum then distribute
# (if we are in expanding mode)
if (expanding && isadd(p1))
p1 = cdr(p1)
push(zero)
while (iscons(p1))
push(car(p1))
push(p2)
inner()
add()
p1 = cdr(p1)
restore()
return
if (expanding && isadd(p2))
p2 = cdr(p2)
push(zero)
while (iscons(p2))
push(p1)
push(car(p2))
inner()
add()
p2 = cdr(p2)
restore()
return
push(p1)
push(p2)
# there are 8 remaining cases here, since each of the
# two arguments can only be a scalar/tensor/unknown
# and the tensor - tensor case was caught
# upper in the code
if (istensor(p1) and isnum(p2))
# one case covered by this branch:
# tensor - scalar
tensor_times_scalar()
else if (isnum(p1) and istensor(p2))
# one case covered by this branch:
# scalar - tensor
scalar_times_tensor()
else
if (isnum(p1) or isnum(p2))
# three cases covered by this branch:
# unknown - scalar
# scalar - unknown
# scalar - scalar
# in these cases a normal multiplication
# will be OK
multiply()
else
# three cases covered by this branch:
# unknown - unknown
# unknown - tensor
# tensor - unknown
# in this case we can't use normal
# multiplication.
pop()
pop()
push_symbol(INNER)
push(p1)
push(p2)
list(3)
restore()
return
restore()
# inner product of tensors p1 and p2
inner_f = ->
i = 0
n = p1.tensor.dim[p1.tensor.ndim - 1]
if (n != p2.tensor.dim[0])
debugger
stop("inner: tensor dimension check")
ndim = p1.tensor.ndim + p2.tensor.ndim - 2
if (ndim > MAXDIM)
stop("inner: rank of result exceeds maximum")
a = p1.tensor.elem
b = p2.tensor.elem
#---------------------------------------------------------------------
#
# ak is the number of rows in tensor A
#
# bk is the number of columns in tensor B
#
# Example:
#
# A[3][3][4] B[4][4][3]
#
# 3 3 ak = 3 * 3 = 9
#
# 4 3 bk = 4 * 3 = 12
#
#---------------------------------------------------------------------
ak = 1
for i in [0...(p1.tensor.ndim - 1)]
ak *= p1.tensor.dim[i]
bk = 1
for i in [1...p2.tensor.ndim]
bk *= p2.tensor.dim[i]
p3 = alloc_tensor(ak * bk)
c = p3.tensor.elem
# new method copied from ginac http://www.ginac.de/
for i in [0...ak]
for j in [0...n]
if (iszero(a[i * n + j]))
continue
for k in [0...bk]
push(a[i * n + j])
push(b[j * bk + k])
multiply()
push(c[i * bk + k])
add()
c[i * bk + k] = pop()
#---------------------------------------------------------------------
#
# Note on understanding "k * bk + j"
#
# k * bk because each element of a column is bk locations apart
#
# + j because the beginnings of all columns are in the first bk
# locations
#
# Example: n = 2, bk = 6
#
# b111 <- 1st element of 1st column
# b112 <- 1st element of 2nd column
# b113 <- 1st element of 3rd column
# b121 <- 1st element of 4th column
# b122 <- 1st element of 5th column
# b123 <- 1st element of 6th column
#
# b211 <- 2nd element of 1st column
# b212 <- 2nd element of 2nd column
# b213 <- 2nd element of 3rd column
# b221 <- 2nd element of 4th column
# b222 <- 2nd element of 5th column
# b223 <- 2nd element of 6th column
#
#---------------------------------------------------------------------
if (ndim == 0)
push(p3.tensor.elem[0])
else
p3.tensor.ndim = ndim
j = 0
for i in [0...(p1.tensor.ndim - 1)]
p3.tensor.dim[i] = p1.tensor.dim[i]
j = p1.tensor.ndim - 1
for i in [0...(p2.tensor.ndim - 1)]
p3.tensor.dim[j + i] = p2.tensor.dim[i + 1]
push(p3)
# Algebrite.run('c·(b+a)ᵀ·inv((a+b)ᵀ)·d').toString();
# Algebrite.run('c*(b+a)ᵀ·inv((a+b)ᵀ)·d').toString();
# Algebrite.run('(c·(b+a)ᵀ)·(inv((a+b)ᵀ)·d)').toString();
get_innerprod_factors = (tree, factors_accumulator) ->
# console.log "extracting inner prod. factors from " + tree
if !iscons(tree)
add_factor_to_accumulator(tree, factors_accumulator)
return
if cdr(tree) == symbol(NIL)
tree = get_innerprod_factors(car(tree), factors_accumulator)
return
if isinnerordot(tree)
# console.log "there is inner at top, recursing on the operands"
get_innerprod_factors(car(cdr(tree)),factors_accumulator)
get_innerprod_factors(cdr(cdr(tree)),factors_accumulator)
return
add_factor_to_accumulator(tree, factors_accumulator)
add_factor_to_accumulator = (tree, factors_accumulator) ->
if tree != symbol(NIL)
# console.log ">> adding to factors_accumulator: " + tree
factors_accumulator.push(tree)