UNPKG

algebrite

Version:

Computer Algebra System in Coffeescript

474 lines (391 loc) 11.7 kB
### dot ===================================================================== Tags ---- scripting, JS, internal, treenode, general concept Parameters ---------- a,b,... General description ------------------- The inner (or dot) operator gives products of vectors, matrices, and tensors. Note that for Algebrite, the elements of a vector/matrix can only be scalars. This allows for example to flesh out matrix multiplication using the usual multiplication. So for example block-representations are not allowed. There is an aweful lot of confusion between sw packages on what dot and inner do. First off, the "dot" operator is different from the mathematical notion of dot product, which can be slightly confusing. The mathematical notion of dot product is here: http://mathworld.wolfram.com/DotProduct.html However, "dot" does that and a bunch of other things, i.e. in Algebrite dot/inner does what the dot of Mathematica does, i.e.: scalar product of vectors: inner((a, b, c), (x, y, z)) > a x + b y + c z products of matrices and vectors: inner(((a, b), (c,d)), (x, y)) > (a x + b y,c x + d y) inner((x, y), ((a, b), (c,d))) > (a x + c y,b x + d y) inner((x, y), ((a, b), (c,d)), (r, s)) > a r x + b s x + c r y + d s y matrix product: inner(((a,b),(c,d)),((r,s),(t,u))) > ((a r + b t,a s + b u),(c r + d t,c s + d u)) the "dot/inner" operator is associative and distributive but not commutative. In Mathematica, Inner is a generalisation of Dot where the user can specify the multiplication and the addition operators. But here in Algebrite they do the same thing. https://reference.wolfram.com/language/ref/Dot.html https://reference.wolfram.com/language/ref/Inner.html http://uk.mathworks.com/help/matlab/ref/dot.html http://uk.mathworks.com/help/matlab/ref/mtimes.html ### Eval_inner = -> # if there are more than two arguments then # reduce it to a more standard version # of two arguments, which means we need to # transform the arguments into a tree of # inner products e.g. # inner(a,b,c) becomes inner(a,inner(b,c)) # this is so we can get to a standard binary-tree # version that is simpler to manipulate. theArguments = [] theArguments.push car(cdr(p1)) secondArgument = car(cdr(cdr(p1))) if secondArgument == symbol(NIL) stop("pattern needs at least a template and a transformed version") moretheArguments = cdr(cdr(p1)) while moretheArguments != symbol(NIL) theArguments.push car(moretheArguments) moretheArguments = cdr(moretheArguments) # make it so e.g. inner(a,b,c) becomes inner(a,inner(b,c)) if theArguments.length > 2 push_symbol(INNER) push theArguments[theArguments.length-2] push theArguments[theArguments.length-1] list(3) for i in [2...theArguments.length] push_symbol(INNER) swap() push theArguments[theArguments.length-i-1] swap() list(3) p1 = pop() Eval_inner() return # TODO we have to take a look at the whole # sequence of operands and make simplifications # on that... operands = [] get_innerprod_factors(p1, operands) #console.log "printing operands --------" #for i in [0...operands.length] # console.log "operand " + i + " : " + operands[i] refinedOperands = [] # removing all identity matrices for i in [0...operands.length] if operands[i] == symbol(SYMBOL_IDENTITY_MATRIX) continue else refinedOperands.push operands[i] operands = refinedOperands refinedOperands = [] if operands.length > 1 # removing all consecutive pairs of inverses # so we can answer that inv(a)·a results in the # identity matrix. We want to catch symbolic inverses # not numeric inverses, those will just take care # of themselves when multiplied shift = 0 for i in [0...operands.length] #console.log "comparing if " + operands[i+shift] + " and " + operands[i+shift+1] + " are inverses of each other" if (i+shift+1) <= (operands.length - 1) #console.log "isnumerictensor " + operands[i+shift] + " : " + isnumerictensor(operands[i+shift]) #console.log "isnumerictensor " + operands[i+shift+1] + " : " + isnumerictensor(operands[i+shift+1]) if !(isnumerictensor(operands[i+shift]) or isnumerictensor(operands[i+shift+1])) push operands[i+shift] Eval() inv() push operands[i+shift+1] Eval() subtract() difference = pop() #console.log "result: " + difference if (iszero(difference)) shift+=1 else refinedOperands.push operands[i+shift] else refinedOperands.push operands[i+shift] else break #console.log "i: " + i + " shift: " + shift + " operands.length: " + operands.length if i+shift == operands.length - 2 #console.log "adding last operand 2 " refinedOperands.push operands[operands.length-1] if i+shift >= operands.length - 1 break operands = refinedOperands #console.log "refined operands --------" #for i in [0...refinedOperands.length] # console.log "refined operand " + i + " : " + refinedOperands[i] #console.log "stack[tos-1]: " + stack[tos-1] # now rebuild the arguments, just using the # refined operands push symbol(INNER) #console.log "rebuilding the argument ----" if operands.length > 0 for i in [0...operands.length] #console.log "pushing " + operands[i] push operands[i] else pop() push symbol(SYMBOL_IDENTITY_MATRIX) return #console.log "list(operands.length): " + (operands.length+1) list(operands.length + 1) p1 = pop() p1 = cdr(p1) push(car(p1)) Eval() p1 = cdr(p1) while (iscons(p1)) push(car(p1)) Eval() inner() p1 = cdr(p1) # inner definition inner = -> save() p2 = pop() p1 = pop() # more in general, when a and b are scalars, # inner(a*M1, b*M2) is equal to # a*b*inner(M1,M2), but of course we can only # "bring out" in a and b the scalars, because # it's the only commutative part. # that's going to be trickier to do in general # but let's start with just the signs. if isnegativeterm(p2) and isnegativeterm(p1) push p2 negate() p2 = pop() push p1 negate() p1 = pop() # since inner is associative, # put it in a canonical form i.e. # inner(inner(a,b),c) -> # inner(a,inner(b,c)) # so that we can recognise when they # are equal. if isinnerordot(p1) arg1 = car(cdr(p1)) #a arg2 = car(cdr(cdr(p1))) #b arg3 = p2 p1 = arg1 push arg2 push arg3 inner() p2 = pop() # Check if one of the operands is the identity matrix # we could maybe use Eval_testeq here but # this seems to suffice? if p1 == symbol(SYMBOL_IDENTITY_MATRIX) push p2 restore() return else if p2 == symbol(SYMBOL_IDENTITY_MATRIX) push p1 restore() return if (istensor(p1) && istensor(p2)) inner_f() else # simple check if the two consecutive elements are one the # (symbolic) inv of the other. If they are, the answer is # the identity matrix if !(isnumerictensor(p1) or isnumerictensor(p2)) push p1 push p2 inv() subtract() subtractionResult = pop() if (iszero(subtractionResult)) push_symbol(SYMBOL_IDENTITY_MATRIX) restore() return # if either operand is a sum then distribute # (if we are in expanding mode) if (expanding && isadd(p1)) p1 = cdr(p1) push(zero) while (iscons(p1)) push(car(p1)) push(p2) inner() add() p1 = cdr(p1) restore() return if (expanding && isadd(p2)) p2 = cdr(p2) push(zero) while (iscons(p2)) push(p1) push(car(p2)) inner() add() p2 = cdr(p2) restore() return push(p1) push(p2) # there are 8 remaining cases here, since each of the # two arguments can only be a scalar/tensor/unknown # and the tensor - tensor case was caught # upper in the code if (istensor(p1) and isnum(p2)) # one case covered by this branch: # tensor - scalar tensor_times_scalar() else if (isnum(p1) and istensor(p2)) # one case covered by this branch: # scalar - tensor scalar_times_tensor() else if (isnum(p1) or isnum(p2)) # three cases covered by this branch: # unknown - scalar # scalar - unknown # scalar - scalar # in these cases a normal multiplication # will be OK multiply() else # three cases covered by this branch: # unknown - unknown # unknown - tensor # tensor - unknown # in this case we can't use normal # multiplication. pop() pop() push_symbol(INNER) push(p1) push(p2) list(3) restore() return restore() # inner product of tensors p1 and p2 inner_f = -> i = 0 n = p1.tensor.dim[p1.tensor.ndim - 1] if (n != p2.tensor.dim[0]) debugger stop("inner: tensor dimension check") ndim = p1.tensor.ndim + p2.tensor.ndim - 2 if (ndim > MAXDIM) stop("inner: rank of result exceeds maximum") a = p1.tensor.elem b = p2.tensor.elem #--------------------------------------------------------------------- # # ak is the number of rows in tensor A # # bk is the number of columns in tensor B # # Example: # # A[3][3][4] B[4][4][3] # # 3 3 ak = 3 * 3 = 9 # # 4 3 bk = 4 * 3 = 12 # #--------------------------------------------------------------------- ak = 1 for i in [0...(p1.tensor.ndim - 1)] ak *= p1.tensor.dim[i] bk = 1 for i in [1...p2.tensor.ndim] bk *= p2.tensor.dim[i] p3 = alloc_tensor(ak * bk) c = p3.tensor.elem # new method copied from ginac http://www.ginac.de/ for i in [0...ak] for j in [0...n] if (iszero(a[i * n + j])) continue for k in [0...bk] push(a[i * n + j]) push(b[j * bk + k]) multiply() push(c[i * bk + k]) add() c[i * bk + k] = pop() #--------------------------------------------------------------------- # # Note on understanding "k * bk + j" # # k * bk because each element of a column is bk locations apart # # + j because the beginnings of all columns are in the first bk # locations # # Example: n = 2, bk = 6 # # b111 <- 1st element of 1st column # b112 <- 1st element of 2nd column # b113 <- 1st element of 3rd column # b121 <- 1st element of 4th column # b122 <- 1st element of 5th column # b123 <- 1st element of 6th column # # b211 <- 2nd element of 1st column # b212 <- 2nd element of 2nd column # b213 <- 2nd element of 3rd column # b221 <- 2nd element of 4th column # b222 <- 2nd element of 5th column # b223 <- 2nd element of 6th column # #--------------------------------------------------------------------- if (ndim == 0) push(p3.tensor.elem[0]) else p3.tensor.ndim = ndim j = 0 for i in [0...(p1.tensor.ndim - 1)] p3.tensor.dim[i] = p1.tensor.dim[i] j = p1.tensor.ndim - 1 for i in [0...(p2.tensor.ndim - 1)] p3.tensor.dim[j + i] = p2.tensor.dim[i + 1] push(p3) # Algebrite.run('c·(b+a)ᵀ·inv((a+b)ᵀ)·d').toString(); # Algebrite.run('c*(b+a)ᵀ·inv((a+b)ᵀ)·d').toString(); # Algebrite.run('(c·(b+a)ᵀ)·(inv((a+b)ᵀ)·d)').toString(); get_innerprod_factors = (tree, factors_accumulator) -> # console.log "extracting inner prod. factors from " + tree if !iscons(tree) add_factor_to_accumulator(tree, factors_accumulator) return if cdr(tree) == symbol(NIL) tree = get_innerprod_factors(car(tree), factors_accumulator) return if isinnerordot(tree) # console.log "there is inner at top, recursing on the operands" get_innerprod_factors(car(cdr(tree)),factors_accumulator) get_innerprod_factors(cdr(cdr(tree)),factors_accumulator) return add_factor_to_accumulator(tree, factors_accumulator) add_factor_to_accumulator = (tree, factors_accumulator) -> if tree != symbol(NIL) # console.log ">> adding to factors_accumulator: " + tree factors_accumulator.push(tree)