algebrite
Version:
Computer Algebra System in Coffeescript
542 lines (427 loc) • 10.9 kB
text/coffeescript
### eigen =====================================================================
Tags
----
scripting, JS, internal, treenode, general concept
Parameters
----------
m
General description
-------------------
Compute eigenvalues and eigenvectors. Matrix m must be both numerical and symmetric.
The eigenval function returns a matrix with the eigenvalues along the diagonal.
The eigenvec function returns a matrix with the eigenvectors arranged as row vectors.
The eigen function does not return anything but stores the eigenvalue matrix in D
and the eigenvector matrix in Q.
Input: stack[tos - 1] symmetric matrix
Output: D diagnonal matrix
Q eigenvector matrix
D and Q have the property that
A == dot(transpose(Q),D,Q)
where A is the original matrix.
The eigenvalues are on the diagonal of D.
The eigenvectors are row vectors in Q.
The eigenvalue relation:
A X = lambda X
can be checked as follows:
lambda = D[1,1]
X = Q[1]
dot(A,X) - lambda X
Example 1. Check the relation AX = lambda X where lambda is an eigenvalue and X is the associated eigenvector.
Enter:
A = hilbert(3)
eigen(A)
lambda = D[1,1]
X = Q[1]
dot(A,X) - lambda X
Result:
-1.16435e-14
-6.46705e-15
-4.55191e-15
Example 2: Check the relation A = QTDQ.
Enter:
A - dot(transpose(Q),D,Q)
Result:
6.27365e-12 -1.58236e-11 1.81902e-11
-1.58236e-11 -1.95365e-11 2.56514e-12
1.81902e-11 2.56514e-12 1.32627e-11
###
#define D(i, j) yydd[EIG_N * (i) + (j)]
#define Q(i, j) yyqq[EIG_N * (i) + (j)]
EIG_N = 0
EIG_yydd = []
EIG_yyqq = []
Eval_eigen = ->
if (EIG_check_arg() == 0)
stop("eigen: argument is not a square matrix")
eigen(EIGEN)
p1 = usr_symbol("D")
set_binding(p1, p2)
p1 = usr_symbol("Q")
set_binding(p1, p3)
push(symbol(NIL))
### eigenval =====================================================================
Tags
----
scripting, JS, internal, treenode, general concept
Parameters
----------
m
General description
-------------------
Compute eigenvalues of m. See "eigen" for more info.
###
Eval_eigenval = ->
if (EIG_check_arg() == 0)
push_symbol(EIGENVAL)
push(p1)
list(2)
return
eigen(EIGENVAL)
push(p2)
### eigenvec =====================================================================
Tags
----
scripting, JS, internal, treenode, general concept
Parameters
----------
m
General description
-------------------
Compute eigenvectors of m. See "eigen" for more info.
###
Eval_eigenvec = ->
if (EIG_check_arg() == 0)
push_symbol(EIGENVEC)
push(p1)
list(2)
return
eigen(EIGENVEC)
push(p3)
EIG_check_arg = ->
i = 0
j = 0
push(cadr(p1))
Eval()
yyfloat()
Eval()
p1 = pop()
if (!istensor(p1))
return 0
if (p1.tensor.ndim != 2 || p1.tensor.dim[0] != p1.tensor.dim[1])
stop("eigen: argument is not a square matrix")
EIG_N = p1.tensor.dim[0]
for i in [0...EIG_N]
for j in [0...EIG_N]
if (!isdouble(p1.tensor.elem[EIG_N * i + j]))
stop("eigen: matrix is not numerical")
for i in [0...(EIG_N-1)]
for j in [(i+1)...EIG_N]
if (Math.abs(p1.tensor.elem[EIG_N * i + j].d - p1.tensor.elem[EIG_N * j + i].d) > 1e-10)
stop("eigen: matrix is not symmetrical")
return 1
#-----------------------------------------------------------------------------
#
# Input: p1 matrix
#
# Output: p2 eigenvalues
#
# p3 eigenvectors
#
#-----------------------------------------------------------------------------
eigen = (op) ->
i = 0
j = 0
# malloc working vars
#EIG_yydd = (double *) malloc(n * n * sizeof (double))
for i in [0...(EIG_N*EIG_N)]
EIG_yydd[i] = 0.0
#if (EIG_yydd == NULL)
# stop("malloc failure")
#EIG_yyqq = (double *) malloc(n * n * sizeof (double))
for i in [0...(EIG_N*EIG_N)]
EIG_yyqq[i] = 0.0
#if (EIG_yyqq == NULL)
# stop("malloc failure")
# initialize D
for i in [0...EIG_N]
EIG_yydd[EIG_N * (i) + (i)] = p1.tensor.elem[EIG_N * i + i].d
for j in [(i+1)...EIG_N]
EIG_yydd[EIG_N * (i) + (j)] = p1.tensor.elem[EIG_N * i + j].d
EIG_yydd[EIG_N * (j) + (i)] = p1.tensor.elem[EIG_N * i + j].d
# initialize Q
for i in [0...EIG_N]
EIG_yyqq[EIG_N * (i) + (i)] = 1.0
for j in [(i+1)...EIG_N]
EIG_yyqq[EIG_N * (i) + (j)] = 0.0
EIG_yyqq[EIG_N * (j) + (i)] = 0.0
# step up to 100 times
for i in [0...100]
if (step() == 0)
break
if (i == 100)
printstr("\nnote: eigen did not converge\n")
# p2 = D
if (op == EIGEN || op == EIGENVAL)
push(p1)
copy_tensor()
p2 = pop()
for i in [0...EIG_N]
for j in [0...EIG_N]
push_double(EIG_yydd[EIG_N * (i) + (j)])
p2.tensor.elem[EIG_N * i + j] = pop()
# p3 = Q
if (op == EIGEN || op == EIGENVEC)
push(p1)
copy_tensor()
p3 = pop()
for i in [0...EIG_N]
for j in [0...EIG_N]
push_double(EIG_yyqq[EIG_N * (i) + (j)])
p3.tensor.elem[EIG_N * i + j] = pop()
# free working vars
#-----------------------------------------------------------------------------
#
# Example: p = 1, q = 3
#
# c 0 s 0
#
# 0 1 0 0
# G =
# -s 0 c 0
#
# 0 0 0 1
#
# The effect of multiplying G times A is...
#
# row 1 of A = c (row 1 of A ) + s (row 3 of A )
# n+1 n n
#
# row 3 of A = c (row 3 of A ) - s (row 1 of A )
# n+1 n n
#
# In terms of components the overall effect is...
#
# row 1 = c row 1 + s row 3
#
# A[1,1] = c A[1,1] + s A[3,1]
#
# A[1,2] = c A[1,2] + s A[3,2]
#
# A[1,3] = c A[1,3] + s A[3,3]
#
# A[1,4] = c A[1,4] + s A[3,4]
#
# row 3 = c row 3 - s row 1
#
# A[3,1] = c A[3,1] - s A[1,1]
#
# A[3,2] = c A[3,2] - s A[1,2]
#
# A[3,3] = c A[3,3] - s A[1,3]
#
# A[3,4] = c A[3,4] - s A[1,4]
#
# T
# The effect of multiplying A times G is...
#
# col 1 of A = c (col 1 of A ) + s (col 3 of A )
# n+1 n n
#
# col 3 of A = c (col 3 of A ) - s (col 1 of A )
# n+1 n n
#
# In terms of components the overall effect is...
#
# col 1 = c col 1 + s col 3
#
# A[1,1] = c A[1,1] + s A[1,3]
#
# A[2,1] = c A[2,1] + s A[2,3]
#
# A[3,1] = c A[3,1] + s A[3,3]
#
# A[4,1] = c A[4,1] + s A[4,3]
#
# col 3 = c col 3 - s col 1
#
# A[1,3] = c A[1,3] - s A[1,1]
#
# A[2,3] = c A[2,3] - s A[2,1]
#
# A[3,3] = c A[3,3] - s A[3,1]
#
# A[4,3] = c A[4,3] - s A[4,1]
#
# What we want to do is just compute the upper triangle of A since we
# know the lower triangle is identical.
#
# In other words, we just want to update components A[i,j] where i < j.
#
#-----------------------------------------------------------------------------
#
# Example: p = 2, q = 5
#
# p q
#
# j=1 j=2 j=3 j=4 j=5 j=6
#
# i=1 . A[1,2] . . A[1,5] .
#
# p i=2 A[2,1] A[2,2] A[2,3] A[2,4] A[2,5] A[2,6]
#
# i=3 . A[3,2] . . A[3,5] .
#
# i=4 . A[4,2] . . A[4,5] .
#
# q i=5 A[5,1] A[5,2] A[5,3] A[5,4] A[5,5] A[5,6]
#
# i=6 . A[6,2] . . A[6,5] .
#
#-----------------------------------------------------------------------------
#
# This is what B = GA does:
#
# row 2 = c row 2 + s row 5
#
# B[2,1] = c * A[2,1] + s * A[5,1]
# B[2,2] = c * A[2,2] + s * A[5,2]
# B[2,3] = c * A[2,3] + s * A[5,3]
# B[2,4] = c * A[2,4] + s * A[5,4]
# B[2,5] = c * A[2,5] + s * A[5,5]
# B[2,6] = c * A[2,6] + s * A[5,6]
#
# row 5 = c row 5 - s row 2
#
# B[5,1] = c * A[5,1] + s * A[2,1]
# B[5,2] = c * A[5,2] + s * A[2,2]
# B[5,3] = c * A[5,3] + s * A[2,3]
# B[5,4] = c * A[5,4] + s * A[2,4]
# B[5,5] = c * A[5,5] + s * A[2,5]
# B[5,6] = c * A[5,6] + s * A[2,6]
#
# T
# This is what BG does:
#
# col 2 = c col 2 + s col 5
#
# B[1,2] = c * A[1,2] + s * A[1,5]
# B[2,2] = c * A[2,2] + s * A[2,5]
# B[3,2] = c * A[3,2] + s * A[3,5]
# B[4,2] = c * A[4,2] + s * A[4,5]
# B[5,2] = c * A[5,2] + s * A[5,5]
# B[6,2] = c * A[6,2] + s * A[6,5]
#
# col 5 = c col 5 - s col 2
#
# B[1,5] = c * A[1,5] - s * A[1,2]
# B[2,5] = c * A[2,5] - s * A[2,2]
# B[3,5] = c * A[3,5] - s * A[3,2]
# B[4,5] = c * A[4,5] - s * A[4,2]
# B[5,5] = c * A[5,5] - s * A[5,2]
# B[6,5] = c * A[6,5] - s * A[6,2]
#
#-----------------------------------------------------------------------------
#
# Step 1: Just do upper triangle (i < j), B[2,5] = 0
#
# B[1,2] = c * A[1,2] + s * A[1,5]
#
# B[2,3] = c * A[2,3] + s * A[5,3]
# B[2,4] = c * A[2,4] + s * A[5,4]
# B[2,6] = c * A[2,6] + s * A[5,6]
#
# B[1,5] = c * A[1,5] - s * A[1,2]
# B[3,5] = c * A[3,5] - s * A[3,2]
# B[4,5] = c * A[4,5] - s * A[4,2]
#
# B[5,6] = c * A[5,6] + s * A[2,6]
#
#-----------------------------------------------------------------------------
#
# Step 2: Transpose where i > j since A[i,j] == A[j,i]
#
# B[1,2] = c * A[1,2] + s * A[1,5]
#
# B[2,3] = c * A[2,3] + s * A[3,5]
# B[2,4] = c * A[2,4] + s * A[4,5]
# B[2,6] = c * A[2,6] + s * A[5,6]
#
# B[1,5] = c * A[1,5] - s * A[1,2]
# B[3,5] = c * A[3,5] - s * A[2,3]
# B[4,5] = c * A[4,5] - s * A[2,4]
#
# B[5,6] = c * A[5,6] + s * A[2,6]
#
#-----------------------------------------------------------------------------
#
# Step 3: Same as above except reorder
#
# k < p (k = 1)
#
# A[1,2] = c * A[1,2] + s * A[1,5]
# A[1,5] = c * A[1,5] - s * A[1,2]
#
# p < k < q (k = 3..4)
#
# A[2,3] = c * A[2,3] + s * A[3,5]
# A[3,5] = c * A[3,5] - s * A[2,3]
#
# A[2,4] = c * A[2,4] + s * A[4,5]
# A[4,5] = c * A[4,5] - s * A[2,4]
#
# q < k (k = 6)
#
# A[2,6] = c * A[2,6] + s * A[5,6]
# A[5,6] = c * A[5,6] - s * A[2,6]
#
#-----------------------------------------------------------------------------
step = ->
i = 0
j = 0
count = 0
# for each upper triangle "off-diagonal" component do step2
for i in [0...(EIG_N-1)]
for j in [(i+1)...EIG_N]
if (EIG_yydd[EIG_N * (i) + (j)] != 0.0)
step2(i, j)
count++
return count
step2 = (p,q) ->
k = 0
t = 0.0
theta = 0.0
c = 0.0
cc = 0.0
s = 0.0
ss = 0.0
# compute c and s
# from Numerical Recipes (except they have a_qq - a_pp)
theta = 0.5 * (EIG_yydd[EIG_N * (p) + (p)] - EIG_yydd[EIG_N * (q) + (q)]) / EIG_yydd[EIG_N * (p) + (q)]
t = 1.0 / (Math.abs(theta) + Math.sqrt(theta * theta + 1.0))
if (theta < 0.0)
t = -t
c = 1.0 / Math.sqrt(t * t + 1.0)
s = t * c
# D = GD
# which means "add rows"
for k in [0...EIG_N]
cc = EIG_yydd[EIG_N * (p) + (k)]
ss = EIG_yydd[EIG_N * (q) + (k)]
EIG_yydd[EIG_N * (p) + (k)] = c * cc + s * ss
EIG_yydd[EIG_N * (q) + (k)] = c * ss - s * cc
# D = D transpose(G)
# which means "add columns"
for k in [0...EIG_N]
cc = EIG_yydd[EIG_N * (k) + (p)]
ss = EIG_yydd[EIG_N * (k) + (q)]
EIG_yydd[EIG_N * (k) + (p)] = c * cc + s * ss
EIG_yydd[EIG_N * (k) + (q)] = c * ss - s * cc
# Q = GQ
# which means "add rows"
for k in [0...EIG_N]
cc = EIG_yyqq[EIG_N * (p) + (k)]
ss = EIG_yyqq[EIG_N * (q) + (k)]
EIG_yyqq[EIG_N * (p) + (k)] = c * cc + s * ss
EIG_yyqq[EIG_N * (q) + (k)] = c * ss - s * cc
EIG_yydd[EIG_N * (p) + (q)] = 0.0
EIG_yydd[EIG_N * (q) + (p)] = 0.0