al-development-collection
Version:
AI Native AL Development toolkit for Microsoft Dynamics 365 Business Central with GitHub Copilot integration
820 lines (645 loc) โข 42 kB
Markdown
# AL Development Collection for GitHub Copilot
> **AI Native Development** toolkit for Microsoft Dynamics 365 Business Central implementing the **[AI-Native Instructions Architecture](https://danielmeppiel.github.io/awesome-ai-native/)** framework with **37 specialized Agent Primitives** across **3 systematic layers**. Features **AL Orchestra** multi-agent TDD system that transforms feature requests into code following BC best practices.
> **v2.8.0** - Workflow Simplification: Direct workflow (User โ al-architect โ al-conductor)
[](./validate-al-collection.js)
[](./CHANGELOG.md)
[](./al-development.md)
[](https://danielmeppiel.github.io/awesome-ai-native/)
[](./LICENSE)
[](https://github.com/javiarmesto/AL-Development-Collection-for-GitHub-Copilot/issues)
[](https://github.com/javiarmesto/AL-Development-Collection-for-GitHub-Copilot/stargazers)
[](https://github.com/javiarmesto/AL-Development-Collection-for-GitHub-Copilot/network/members)
[](https://github.com/javiarmesto/AL-Development-Collection-for-GitHub-Copilot/graphs/contributors)
## ๐ Quick Start
> **โก 5-Minute Setup** โ [Complete Quick Start Guide](./QUICK-START.md)
### Installation
**Option 1: VS Code Extension (Recommended)**
```
1. Install from Marketplace: Search "AL Development Collection"
2. Open Command Palette (Ctrl+Shift+P)
3. Run: AL Collection: Install Toolkit to Workspace
```
**Option 2: NPM Package**
```bash
# Install via npm
npm install github:javiarmesto/AL-Development-Collection-for-GitHub-Copilot
npx al-collection install
# Or use directly with npx
npx al-development-collection install
```
**CLI Commands:**
```bash
# Install to current or specified directory
npx al-development-collection install [path]
# Update existing installation (merge mode)
npx al-development-collection update
# Validate installation
npx al-development-collection validate
# Get help
npx al-development-collection --help
```
**Features:**
- โ
**Auto-detects AL projects** - Searches for app.json automatically
- โ
**Interactive selection** - Choose from multiple projects if found
- โ
**Smart merging** - Preserves existing files, only adds new ones
- โ
**Validation** - Built-in installation verification
**Option 3: Clone & Install**
For development or customization:
```bash
git clone https://github.com/javiarmesto/AL-Development-Collection-for-GitHub-Copilot.git
cd AL-Development-Collection-for-GitHub-Copilot
node install.js install [your-al-project]
```
**Then**: Reload VS Code (`Ctrl+Shift+P` โ `Developer: Reload Window`)
**Recommendation**: Use **VS Code Extension** for easiest setup. Use npm CLI for automation. Use Clone for development.
### First Use
**๐ Follow the complete example**: [Customer Loyalty Points System](./QUICK-START.md#-complete-example-customer-loyalty-points-system)
Or start directly:
**New project?**
```bash
@workspace use al-initialize
```
**Have a feature to build?**
```markdown
Use al-architect mode
[Describe your requirements]
```
**Need debugging?**
```markdown
Use al-debugger mode
[Describe the issue]
```
## ๐๏ธ AI Native-Instructions Architecture Framework
This collection implements the **[AI Native-Instructions Architecture](https://danielmeppiel.github.io/awesome-ai-native/)** framework with **3 systematic layers** that transform ad-hoc AI usage into reliable, repeatable engineering:
```mermaid
graph TB
Dev[๐ค Developer] --> Layer1[Layer 1: Markdown Prompt Engineering]
Layer1 --> |Structured Instructions| Layer2[Layer 2: Agent Primitives]
Layer2 --> |Context Optimization| Layer3[Layer 3: Context Engineering]
Layer2 --> Instructions["๐ Instructions Files (Auto-applied guidelines)"]
Layer2 --> Agents["๐ฌ Agents (Role-based specialists)"]
Layer2 --> Prompts["๐ฏ Prompts-Agentic Workflows (Task execution)"]
Layer3 --> Modular["Modular Loading (applyTo patterns)"]
Layer3 --> AGENTSMD["AGENTS.md Standard (Universal portability)"]
Instructions --> Copilot[๐ค GitHub Copilot]
Agents --> Copilot
Prompts --> Copilot
style Layer1 fill:#9C27B0
style Layer2 fill:#2196F3
style Layer3 fill:#4CAF50
style Copilot fill:#FF9800
```
### ๐ฏ Framework Layers
| Layer | Focus | Purpose | AL Implementation |
|-------|-------|---------|-------------------|
| **Layer 1** | **Markdown Prompt Engineering** | Structured instructions using semantic markdown | Headers, lists, links for AI reasoning |
| **Layer 2** | **Agent Primitives** | Configurable tools (Instructions, Modes, Prompts) | 7 Instructions + 11 Agents + 18 Workflows + 1 Guide |
| **Layer 3** | **Context Engineering** | Strategic context management via `applyTo` patterns | Modular loading, AGENTS.md compilation ready |
### ๐ Agent Primitives Breakdown
| Primitive Type | Count | Activation | Purpose |
|----------------|-------|------------|---------|
| **Instructions** | 9 files | Auto via `applyTo` patterns | Persistent coding rules & standards |
| **Agents** | 7 files | `Use [mode-name]` | Role-based strategic/tactical specialists |
| **Orchestra System** | 4 files | `Use al-conductor` | Multi-agent TDD orchestration |
| **Agentic Workflows** | 18 files | `@workspace use [name]` | Complete task execution processes |
| **Total Primitives** | **37 tools** | โ | Complete AI Native toolkit with TDD |
## ๐ฆ What's Included: Agent Primitives
### ๐ Instructions Files (9 primitives)
**Markdown Prompt Engineering** implemented as modular `.instructions.md` files with `applyTo` patterns:
**Always Active** (apply to `**/*.al`):
- **al-guidelines** - Master hub referencing all patterns
- **al-code-style** - Code formatting & feature-based structure
- **al-naming-conventions** - PascalCase standards & 26-char limits
- **al-performance** - SetLoadFields, early filtering, temporary tables
**Context-Activated** (apply based on context):
- **al-error-handling** - TryFunctions, error labels, telemetry (`applyTo: **/*.al`)
- **al-events** - Event subscribers, integration events (`applyTo: **/*.al`)
- **al-testing** - AL-Go structure, test generation (`applyTo: **/test/**/*.al`)
**Integration & Coordination**:
- **copilot-instructions** - Master coordination document (auto-loaded as `.github/copilot-instructions.md`)
- **index** - Complete instructions catalog and usage guide
> ๐ก **Context Engineering**: Instructions use `applyTo` frontmatter for selective loading, optimizing context window usage
### ๐ฏ Agentic Workflows (18 primitives)
**Systematic processes** as `.prompt.md` files with validation gates and tool access:
**General Workflows** - Invoke with `@workspace use [name]`:
- **al-initialize** - Complete environment and workspace setup (consolidated)
- **al-diagnose** - Runtime debugging and configuration troubleshooting (consolidated)
- **al-build** - Build, package, publish workflows
- **al-events** - Event subscriber/publisher implementation
- **al-performance** - Deep performance analysis with CPU profiling
- **al-performance.triage** - Quick performance diagnosis and static analysis
- **al-permissions** - Permission set generation
- **al-migrate** - BC version upgrade workflows
- **al-pages** - Page Designer integration
- **al-spec.create** - Functional-technical specifications
- **al-pr-prepare** - Pull request preparation (streamlined template)
- **al-translate** - XLF translation file management
**Context & Memory Workflows** - AI assistant continuity:
- **al-context.create** - Generate project context.md file for AI assistants
- **al-memory.create** - Generate/update memory.md for session continuity
**Copilot Workflows** - Specialized for AI-powered features:
- **al-copilot-capability** - Register new Copilot capability with enum extension and setup
- **al-copilot-promptdialog** - Create complete PromptDialog page with all areas
- **al-copilot-test** - Comprehensive testing with AI Test Toolkit
- **al-copilot-generate** - Generate Copilot code from natural language
> ๐ก **Agentic Workflows**: Prompts orchestrate primitives into complete processes with human validation checkpoints.
### ๐ฌ Agents (7 primitives)
**Role-based specialists** with MCP tool boundaries (like professional licensing):
**Strategic Specialists** (design & analyze):
- **al-architect** ๐๏ธ - Solution architecture, cannot execute builds (START HERE)
- **al-debugger** ๐ - Deep diagnosis, systematic troubleshooting
- **al-tester** โ
- Testing strategy, TDD methodology
- **al-api** ๐ - RESTful API design & implementation
- **al-copilot** ๐ค - AI-powered Copilot features development
**Tactical Specialist** (implement & execute):
- **al-developer** ๐ป - Code implementation with full build tool access
> ๐ก **Tool Boundaries**: Each mode has explicit CAN/CANNOT lists preventing cross-domain security breaches
### ๐ญ AL Orchestra System (4 primitives) - NEW in v2.6
**Multi-Agent TDD Orchestration** adapted from [GitHub Copilot Orchestra](https://github.com/ShepAlderson/copilot-orchestra) with AL-specific enhancements:
**Main Agent**:
- **al-conductor** ๐ฏ - Orchestrates Planning โ Implementation โ Review โ Commit cycle
**Specialized Subagents** (called automatically by conductor):
- **al-planning-subagent** ๐ - AL-aware research and context gathering
- **al-implement-subagent** โ๏ธ - TDD-focused implementation (RED โ GREEN โ REFACTOR)
- **al-review-subagent** โ
- Code review against AL best practices
**Key Features**:
- ๐งช **TDD Enforcement**: Failing tests first, then minimal code, then refactor
- ๐จ **Event-Driven Validation**: Prevents base BC object modifications
- ๐ **Auto-Documentation**: Generates plan files in `.github/plans/`
- ๐ฆ **Quality Gates**: Automated review before each commit
- ๐ฐ **Cost-Optimized**: Uses Haiku for implementation, Sonnet for strategic work
**Usage**:
```markdown
Use al-conductor mode
Add email validation to Customer table with these requirements:
- Use regex pattern matching
- Allow empty emails (optional in BC)
- Show user-friendly error messages
```
**Result**: Multi-phase plan โ TDD implementation โ Quality validation โ Documentation trail
**[๐ Complete Orchestra Documentation](./agents/orchestration/README.md)**
> ๐ก **When to Use**: Complex features (3+ phases), production code requiring quality gates, bug fixes with TDD proof, or learning AL through guided implementation
### ๐ Agent Context & Memory System (NEW in v2.7)
**Centralized documentation system** ensuring all agents share context and maintain consistency:
**Documentation Location**: `.github/plans/`
**Core Documents**:
- **`architecture.md`** - System architecture decisions and patterns
- **`spec.md`** - Functional and technical specifications
- **`test-plan.md`** - Test strategy and coverage requirements
- **`memory.md`** - Session history and decision rationale
**Agent Integration**:
**Orchestra Agents** (context-aware collaboration):
- **al-conductor**: Reads architecture/spec upfront, passes context to subagents
- **al-planning-subagent**: Documents research findings for conductor's plan creation
- **al-implement-subagent**: Aligns implementation with architecture/spec/test-plan
- **al-review-subagent**: Validates compliance against all context documents
**Specialist Agents** (context-aware design):
- **al-developer**: Reads all context docs before coding, ensures consistency
- **al-api**: Produces `<endpoint>-api-design.md` documenting contracts and integration
- **al-copilot**: Generates `<feature>-copilot-ux-design.md` covering AI prompts and UX
**Key Benefits**:
- โ
**Consistency**: All agents reference the same architectural decisions
- ๐ **Knowledge Transfer**: New agents inherit project context automatically
- ๐ **Session Continuity**: Memory system preserves decisions across interactions
- ๐ฏ **Quality Assurance**: Review validates against documented requirements
- ๐ **Auto-Documentation**: Design decisions captured for team reference
**Workflow Example**:
```markdown
1. Use al-architect mode โ Creates architecture.md
2. @workspace use al-spec.create โ Generates spec.md
3. Use al-conductor mode โ Reads docs, implements with subagents
4. al-review-subagent โ Validates against architecture.md + spec.md
5. Result: Consistent implementation aligned with design
```
**Document Templates Available**:
- API Design: `docs/templates/api-design-template.md`
- Copilot UX: `docs/templates/copilot-ux-design-template.md`
- Architecture: Generated by al-architect during planning
- Specifications: Generated by al-spec.create workflow
> ๐ก **Best Practice**: Always create architecture.md and spec.md before using al-conductor for medium/high complexity features
### ๐ Complete Development Flow Guide
**NEW**: Visual guide for choosing the right workflow based on task complexity:
**[๐ Complete Development Flow Documentation](./docs/workflows/complete-development-flow.md)**
This comprehensive guide includes:
- **Decision Tree** - Automated routing based on complexity level (Simple/Moderate/Complex/Specialized)
- **3 Development Patterns** :
- Pattern 1: Simple Features (direct implementation)
- Pattern 2: Moderate Features (TDD with multi-phase planning)
- Pattern 3: Complex Features (architecture + specialized design)
- **Specialized Flows** for specific scenarios:
- Flow A: API Development (REST/OData)
- Flow B: AI/Copilot Features (prompt engineering)
- Flow C: Performance Optimization (profiling + refactoring)
- **Real Examples** from Customer Loyalty Points test case
> ๐ก **Quick Start**: Unsure which agent or workflow to use? Check the decision tree in the complete flow guide!
### ๐ Integration Guide (1 primitive)
- **copilot-instructions.md** - Master document coordinating all 37 primitives with usage guidance
## ๐ฏ Common Workflows
> **๐ New to the collection?** Check the **[Complete Development Flow Guide](./docs/workflows/complete-development-flow.md)** for visual decision trees and pattern selection!
**Have a feature to implement?** The collection uses **automatic complexity classification** with validation gates:
1. **Describe your requirements** (document, specs, or plain description)
2. **System analyzes** and infers complexity: ๐ข LOW / ๐ก MEDIUM / ๐ด HIGH
3. **You confirm** the classification (๐ฆ VALIDATION GATE - mandatory)
4. **Auto-routes** to the appropriate agent/workflow
## ๐ฆ Routing Matrix by Confirmed Complexity
> โ ๏ธ **Experimental & Customizable Classification**: This routing system is an **experimental approach** that you can customize by editing framework files (`README.md`, `agents/index.md`, `instructions/copilot-instructions.md`) in your repository. Complexity is assessed by scope, integration depth, and architectural impactโnot by counting AL objects. **Modify the criteria, thresholds, and routing paths** to match your team's expertise and project requirements.
| Complexity | Domain | Scenario Description | Agent Route | Why This Path |
|------------|--------|----------------------|-------------|---------------|
| ๐ข **LOW** | ๐ฏ **Standard** | Simple field addition, basic validation, single UI change | `al-developer` | Direct implementation - scope is clear, no design needed |
| ๐ข **LOW** | ๐ **Bug Fix** | Known issue with clear reproduction steps | `al-debugger` โ `al-developer` | Diagnose root cause first, then implement fix with tests |
| ๐ข **LOW** | โ
**Test Addition** | Adding tests to existing well-structured code | `al-tester` โ `al-developer` | Design test strategy, then implement test cases |
| ๐ก **MEDIUM** | ๐๏ธ **Feature** | Business logic with data flow, internal integrations | `al-conductor` | TDD orchestration ensures quality across 2-3 phases |
| ๐ก **MEDIUM** | ๐ **API** | RESTful endpoints, OData pages, internal API exposure | `al-api` โ `al-conductor` | Design API contract first, then implement with TDD |
| ๐ก **MEDIUM** | ๐ค **Copilot Feature** | Copilot capability, PromptDialog, basic AI integration | `al-copilot` โ `al-conductor` | Design AI UX and prompts, then build with quality gates |
| ๐ก **MEDIUM** | ๐ **Complex Bug** | Intermittent issue requiring systematic investigation | `al-debugger` โ `al-conductor` | Diagnose with profiling, then fix with comprehensive tests |
| ๐ด **HIGH** | ๐๏ธ **Architecture** | Multi-module feature, new patterns, broad impact | `al-architect` โ `al-conductor` | Design architecture first, then orchestrate TDD implementation |
| ๐ด **HIGH** | ๐ **Integration** | External APIs, OAuth, Azure services, webhooks | `al-api` โ `al-architect` โ `al-conductor` | API design โ System architecture โ Secure TDD implementation |
| ๐ด **HIGH** | โก **Performance** | System-wide optimization, architectural bottlenecks | `al-architect` โ `al-conductor` | Analyze architecture impact, design optimization strategy |
**Quick examples:**
- ๐ข LOW: "Add Priority field to Sales Header" โ `al-developer`
- ๐ก MEDIUM: "Customer loyalty points with calculation" โ `al-conductor`
- ๐ด HIGH: "External API integration with OAuth and retry logic" โ `al-api` โ `al-architect` โ `al-conductor`
**Start here if unsure:**
```markdown
Use al-architect mode
I need to [describe your requirement]
```
al-architect will analyze requirements, design the solution architecture, and recommend the appropriate workflow (al-developer for simple features, al-conductor for complex TDD implementation).
**[๐ See complete routing matrix and decision tree](./docs/workflows/complete-development-flow.md)**
### Debugging Issues
```text
1. @workspace use al-diagnose โ Diagnose and debug
2. @workspace use al-performance โ Profile (if needed)
3. Fix (auto-guidelines active)
4. Use al-tester mode โ Test strategy
```
### API Development (Specialized Flow)
```text
1. Use al-architect mode โ Design API contract
2. Use al-api mode โ Implement REST/OData
3. @workspace use al-permissions โ Security
4. Use al-tester mode โ API test suite
5. @workspace use al-build โ Deploy
```
**[๐ Complete API Flow with examples](./docs/workflows/complete-development-flow.md#flow-a-api-development)**
### AI/Copilot Features (Specialized Flow)
```text
1. Use al-copilot mode โ Design AI capability
2. @workspace use al-copilot-capability โ Register
3. @workspace use al-copilot-promptdialog โ UI
4. @workspace use al-copilot-test โ Validate
```
**[๐ Complete Copilot Flow with examples](./docs/workflows/complete-development-flow.md#flow-b-aicopilot-features)**
## ๐ Documentation
### Framework Documentation
- **[AI Native-Instructions Architecture Implementation](./references/AI%20Native-INSTRUCTIONS-ARCHITECTURE.md)** - Framework compliance details
- **[AI Native-Instructions Framework Guide](https://danielmeppiel.github.io/awesome-ai-native/)** - Complete framework reference
- **[AGENTS.md Standard](https://agents.md)** - Universal context format
### Collection Documentation
- **[Collection Overview](./al-development.md)** - User-facing guide
- **[Instructions Index](./instructions/index.md)** - Complete guide to all instruction files
- **[Prompts Index](./prompts/index.md)** - Complete guide to all agentic workflows
- **[Agents Index](./agents/index.md)** - Complete guide to all agents
- **[Integration Guide](./instructions/copilot-instructions.md)** - Master coordination document
## ๐ ๏ธ Requirements
- Visual Studio Code Insiders
- AL Language extension for Business Central
- GitHub Copilot extension (active subscription)
- Business Central development environment (sandbox recommended)
- Node.js 14+ (for validation script)
## ๐ MCP Servers Integration
This collection leverages **Model Context Protocol (MCP) servers** to enhance GitHub Copilot's capabilities with specialized tools:
### Configured MCP Servers
| Server | Purpose | Key Tools |
|--------|---------|-----------|
| **[al-symbols-mcp](https://github.com/StefanMaron/AL-Dependency-MCP-Server)** | AL object analysis from compiled .app packages (by Stefan Maron) | `al_search_objects`, `al_get_object_definition`, `al_find_references`, `al_search_object_members`, `al_get_object_summary`, `al_packages` |
| **[context7](https://github.com/upstash/context7)** | Up-to-date library documentation retrieval | `resolve-library-id`, `get-library-docs` |
| **[microsoft-docs](https://github.com/nicholasglazer/microsoft-docs-mcp)** | Official Microsoft/Azure documentation search | `microsoft_docs_search`, `microsoft_code_sample_search`, `microsoft_docs_fetch` |
### Configuration
MCP servers are configured in `.vscode/mcp.json`:
```json
{
"servers": {
"al-symbols-mcp": {
"type": "stdio",
"command": "npx",
"args": ["al-mcp-server"]
}
}
}
```
### Agent Integration
The MCP tools are integrated into specific agents based on their specialization:
**al-symbols-mcp tools assigned to:**
- **al-planning-subagent** - All 6 tools for comprehensive AL research
- **al-developer** - All tools via wildcard for implementation
- **al-architect** - Search, definition, references, summary for design analysis
- **al-debugger** - References, definition, members for troubleshooting
**Prompts with al-symbols-mcp:**
- **al-events** - Object search and references for event implementation
- **al-diagnose** - References and definitions for debugging
- **al-spec.create** - Object search and summary for specifications
> ๐ก **Note**: al-symbols-mcp requires compiled `.app` files in `.alpackages` directory. Ensure you have downloaded symbols (`al_download_symbols`) before using these tools.
## โ
Validation
Validate the collection before contributing:
```bash
# Install dependencies
npm install
# Run validation
npm run validate
```
Expected output:
```
โ
Collection is fully compliant and ready for contribution!
```
## ๐ Usage Examples
### Example 1: Simple Feature (๐ข LOW Complexity)
```markdown
User: "Add email validation to Customer table"
Classification: ๐ข LOW
- Scope: Limited (single table)
- Integration: None
- Route: al-developer mode
Result: Field + validation implemented in ~5 minutes
```
### Example 2: Feature Development (๐ก MEDIUM Complexity)
```markdown
User: "Build customer loyalty points system"
Classification: ๐ก MEDIUM
- Scope: Moderate (Customer + Sales + Loyalty)
- Integration: Internal (event subscribers)
- Route: al-architect โ al-conductor (TDD Orchestra)
Workflow:
1. al-architect designs architecture (20 min)
2. al-conductor orchestrates implementation:
- Planning subagent researches BC objects
- Implement subagent executes 7 TDD phases
- Review subagent validates quality gates
3. Result: 10 AL objects, 63 tests, 100% passing (90 min)
```
### Example 3: Complex Integration (๐ด HIGH Complexity)
```markdown
User: "Integrate with external payment gateway (OAuth + webhooks)"
Classification: ๐ด HIGH
- Scope: Extensive (Sales + Finance + Security + API)
- Integration: External (REST API, OAuth 2.0)
- Route: al-api โ al-architect โ al-conductor
Workflow:
1. al-api designs API contract (1 hour)
2. al-architect plans system architecture (2 hours)
3. al-conductor implements with TDD (1-2 days)
4. Security review + performance profiling
```
## ๐ค Contributing
Found an issue or have a suggestion?
1. **Report Issues**
- Use GitHub Issues
- Provide specific examples
- Include error messages
2. **Suggest Improvements**
- New prompts for common tasks
- New modes for specialized scenarios
- Better patterns and examples
3. **Contribution Guidelines**
- Follow file naming conventions
- Include proper frontmatter
- Update manifest file
- Run validation before submitting
See [CONTRIBUTING.md](./CONTRIBUTING.md) for detailed guidelines.
## ๐ File Structure
**AI Native-Instructions Architecture** with **37 Agent Primitives** across **3 layers**:
```
AL-Development-Collection-for-GitHub-Copilot/
โโโ .github/ # GitHub integration
โ โโโ ISSUE_TEMPLATE/ # Issue templates
โ โโโ PULL_REQUEST_TEMPLATE.md # PR template
โ โโโ copilot-instructions.md # Master coordination (symlink)
โโโ instructions/ # ๐ Layer 1: Instructions (9 files)
โ โโโ index.md # Complete guide
โ โโโ copilot-instructions.md # Master integration guide
โ โโโ al-guidelines.instructions.md # Master hub (applyTo: **/*.{al,json})
โ โโโ al-code-style.instructions.md # Code style (applyTo: **/*.al)
โ โโโ al-naming-conventions.instructions.md # Naming rules
โ โโโ al-performance.instructions.md # Performance patterns
โ โโโ al-error-handling.instructions.md # Error handling
โ โโโ al-events.instructions.md # Event-driven patterns
โ โโโ al-testing.instructions.md # Testing (applyTo: **/test/**/*.al)
โโโ prompts/ # ๐ฏ Layer 2: Agentic Workflows (18 files)
โ โโโ index.md # Complete workflows guide
โ โโโ al-initialize.prompt.md # Environment & workspace setup
โ โโโ al-diagnose.prompt.md # Debug & troubleshoot
โ โโโ al-build.prompt.md # Build & deployment
โ โโโ al-events.prompt.md # Event implementation
โ โโโ al-performance.prompt.md # Deep profiling
โ โโโ al-performance.triage.prompt.md # Quick analysis
โ โโโ al-permissions.prompt.md # Permission generation
โ โโโ al-migrate.prompt.md # Version migration
โ โโโ al-pages.prompt.md # Page Designer
โ โโโ al-spec.create.prompt.md # Specifications
โ โโโ al-pr-prepare.prompt.md # Pull request prep
โ โโโ al-translate.prompt.md # XLF translation
โ โโโ al-context.create.prompt.md # Context file generation
โ โโโ al-memory.create.prompt.md # Memory file generation
โ โโโ al-copilot-capability.prompt.md # Copilot capability registration
โ โโโ al-copilot-promptdialog.prompt.md # PromptDialog creation
โ โโโ al-copilot-test.prompt.md # AI Test Toolkit integration
โ โโโ al-copilot-generate.prompt.md # Natural language to code
โโโ agents/ # ๐ฌ Layer 2: Agents (6 + 4 files)
โ โโโ index.md # Complete agent guide
โ โโโ al-architect.agent.md # ๐๏ธ Solution architecture (START HERE)
โ โโโ al-developer.agent.md # ๐ป Tactical implementation
โ โโโ al-debugger.agent.md # ๐ Deep debugging
โ โโโ al-tester.agent.md # โ
Testing strategy
โ โโโ al-api.agent.md # ๐ API development
โ โโโ al-copilot.agent.md # ๐ค AI features
โ โโโ orchestration/ # ๐ญ Orchestra System (4 files)
โ โโโ README.md # Complete Orchestra docs (23k chars)
โ โโโ index.md # Quick reference
โ โโโ al-conductor.agent.md # Main orchestration agent
โ โโโ al-planning-subagent.agent.md # AL-aware research
โ โโโ al-implement-subagent.agent.md # TDD implementation (Haiku 4.5)
โ โโโ al-review-subagent.agent.md # Quality validation
โโโ docs/ # Documentation mirrors
โ โโโ agents/ # Agent documentation
โ โโโ instructions/ # Instructions documentation
โ โโโ prompts/ # Prompts documentation
โ โโโ workflows/
โ โโโ complete-development-flow.md # Visual workflow guide
โโโ collections/ # Collection manifests
โ โโโ al-development.collection.yml # Main collection (37 primitives)
โโโ references/ # Framework documentation
โ โโโ AI Native-INSTRUCTIONS-ARCHITECTURE.md # Framework compliance
โ โโโ ai native-concepts.md # Core concepts
โ โโโ ai native structure.md # Structure guide
โโโ archive/ # Historical files
โ โโโ README.md # Archive documentation
โ โโโ MIGRATION-FROM-ORCHESTRATOR.md # Migration guide (v2.8.0)
โ โโโ al-orchestrator.agent.md # Archived: Smart router (deprecated v2.8.0)
โโโ al-development.md # Framework overview
โโโ CONTRIBUTING.md # Contribution guidelines
โโโ CHANGELOG.md # Version history
โโโ LICENSE # MIT License
โโโ SECURITY.md # Security policy
โโโ validate-al-collection.js # Compliance validation
โโโ package.json # Dependencies
โโโ QUICK-START.md # Quick start guide with complete example
โโโ REPRODUCIBLE-EXAMPLE.md # Step-by-step reproducible example
โโโ README.md # This file
# Total: 37 Agent Primitives (9 instructions + 18 workflows + 6 agents + 4 orchestra)
# AGENTS.md compilation ready (Layer 3: Context Engineering)
# All primitives use applyTo patterns for modular context loading
```
## ๐ท๏ธ Version History
### 2.8.0 (2025-11-14) - Workflow Simplification
- ๐ฏ **Simplified Workflow** - Reduced from 3-4 steps to 2 steps
- Removed al-orchestrator routing layer (archived)
- Direct workflow: User โ al-architect (design) โ al-conductor (implement)
- 40% reduction in decision fatigue
- ๐ **Example-Based Learning** - Single validated reproducible example
- QUICK-START.md with complete Customer Loyalty Points walkthrough
- REPRODUCIBLE-EXAMPLE.md with step-by-step instructions
- Replaced multiple incomplete examples with one comprehensive case
- ๐ **Migration Guide** - MIGRATION-FROM-ORCHESTRATOR.md for existing users
- Before/after workflow comparison tables
- Decision tree without orchestrator
- FAQ for common migration questions
- ๐ **Total Primitives** - 37 tools (9 + 18 + 6 + 4) - orchestrator archived
- ๐ **Better Onboarding** - 5-minute setup โ working example in <2 hours
- โ
**Validation** - Customer Loyalty Points test case (24/24 validations passed)
### 2.7.0 (2025-11-10) - Agent Context & Memory System
- ๐ **Agent Context System** - Centralized documentation in `.github/plans/`
- Core documents: architecture.md, spec.md, test-plan.md, memory.md
- All orchestra agents read and reference shared context
- Specialist agents (developer, API, Copilot) produce design documents
- ๐ **Session Continuity** - Memory system preserves decisions across interactions
- ๐ **Knowledge Transfer** - Context automatically shared between agents
- ๐ฏ **Quality Consistency** - Review validates against documented requirements
- ๐ **Auto-Documentation** - Design decisions captured in structured templates
- ๐๏ธ **Enhanced Collaboration** - Conductor delegates with full context awareness
- โ
**Phase 2 Complete** - All orchestration subagents and specialists context-aware
- ๐ **Total Primitives** - 38 tools unchanged (9 + 18 + 7 + 4)
- ๐ **Production Ready** - Context system validated across orchestra workflow
### 2.6.0 (2025-11-09) - Routing Matrix Optimization & Complexity Classification
- ๐ฏ **Routing Matrix Optimization** - Streamlined from 14 to 10 essential paths
- Removed edge cases (AI System, Migration) for clarity
- Enhanced with 5-column format: Domain | Scenario | Route | Rationale
- Added domain icons for visual identification (๐ฏ๐โ
๐๏ธ๐๐คโก)
- ๐ **Complexity Classification System** - Scope-based assessment framework
- 5-question framework (Scope, Integration, Logic, Phases, Impact)
- Removed all object count references (conceptual purity)
- ๐ฆ **Validation Gate Protocol** - Mandatory user confirmation before routing
- Experimental & customizable by teams (documented adaptation process)
- ๐งช **Test Validation** - Complete framework testing with Customer Loyalty Points
- 24/24 validations passed (100% success rate)
- 7-phase TDD workflow validated
- Test execution documented in `.local/test-execution-results-2025-11-09.md`
- ๐ **Workshop Materials Updated** - Complete workshop v2.0 ready
- Added complexity assessment module (30 min)
- Added customization workshop module (30 min)
- 6 practice classification exercises with solutions
- Updated to 7 parts, 4h 45min total duration
- ๐ **Total Primitives** - 38 tools unchanged (9 + 18 + 7 + 4)
- ๐ **Framework Maturity** - Production-ready with test validation
### 2.6.0-beta (2025-11-08) - AL Orchestra Multi-Agent TDD System
- ๐ญ **AL Orchestra System** - NEW multi-agent TDD orchestration (4 agents)
- **al-conductor**: Main orchestration agent for Planning โ Implementation โ Review โ Commit cycle
- **al-planning-subagent**: AL-aware research and context gathering
- **al-implement-subagent**: TDD-focused implementation with full AL MCP tools (uses Haiku 4.5 for cost optimization)
- **al-review-subagent**: Code review against AL best practices with CRITICAL/MAJOR/MINOR severity levels
- ๐งช **TDD Enforcement** - Strict RED (failing tests) โ GREEN (minimal code) โ REFACTOR cycle
- ๐จ **Event-Driven Validation** - Prevents base BC object modifications (extension patterns only)
- ๐ **Auto-Documentation** - Generates plan files in `.github/plans/` with complete audit trail
- ๐ฆ **Quality Gates** - Automated review before each commit with AL-specific checks
- ๐ฐ **Cost-Optimized** - Uses Haiku for implementation, Sonnet for strategic work (30-40% cost reduction)
- ๐ **Total Primitives** - 38 tools (9 instructions + 18 workflows + 11 agents)
- ๐ **Complete Documentation** - 23k-character adaptability analysis, 15k-character Orchestra guide
- ๐ **Backward Compatible** - All existing agents work unchanged, Orchestra is additive
- ๐ฏ **Framework Alignment** - Implements GitHub Copilot Orchestra pattern adapted for AL development
### 2.5.0 (2025-10-31) - Developer Mode & Context Management
- ๐ป **al-developer Mode** - NEW tactical implementation specialist
- Full MCP tool access (al_build, al_publish, al_incrementalpublish)
- Executes code changes, builds, and tests
- Bridges gap between strategic modes and implementation
- Delegates architectural decisions to specialized modes
- ๐ **al-context.create Workflow** - Generate project context.md files
- 16-section comprehensive project documentation
- AI assistant onboarding in <2 minutes
- Architecture, decisions, navigation guide
- ๐ง **al-memory.create Workflow** - Session continuity tracking
- 12-section development memory log
- Decision tracking with rationale
- Problem/solution patterns documentation
- TODO and learning journal
- ๐ **Total Primitives** - 32 tools (7 instructions + 18 workflows + 7 modes + 1 guide)
- ๐ฏ **Cognitive Focus** - Complete separation: Think (architect) โ Do (developer) โ Validate (tester)
- ๐๏ธ **Enhanced Workflows** - Better integration between strategic and tactical work
### 2.4.0 (2025-10-28) - Copilot Development Expansion
- ๐ค **AL Copilot Mode** - Complete rewrite with 3x more content (1,280 lines)
- Quick Start guide (5-minute first Copilot)
- Complete PromptDialog patterns (all 5 areas)
- Modern patterns (SetManagedResourceAuthorization, AI Test Toolkit)
- Real-world examples from Lab1_3 repository
- Advanced prompt engineering techniques
- Responsible AI implementation patterns
- ๐ฏ **New Copilot Workflows** - 3 specialized prompts added (15 total workflows)
- al-copilot-capability: Register Copilot capability
- al-copilot-promptdialog: Create PromptDialog pages
- al-copilot-test: Test with AI Test Toolkit
- ๐ **al-orchestrator** - Converted to GUIDE/EXAMPLE for agent creation
- ๐ **Total Primitives** - 29 tools (7 instructions + 15 workflows + 6 modes + 1 guide)
- ๐๏ธ **AI Native Development** - Full compliance maintained across all new content
### 2.3.0 (2025-10-27) - Workflow Optimization
- ๐ **Consolidated Workflows** - Reduced from 14 to 11 workflows (-21%)
- ๐ฏ **al-initialize** - Merged al-setup + al-workspace into single initialization workflow
- ๐ **al-diagnose** - Merged al-debug + al-troubleshoot into unified diagnostics
- โ๏ธ **Streamlined Templates** - al-pr-prepare reduced from 509 to ~240 lines
- โ **Removed Redundancy** - Eliminated al-workflow (overlapped with specialized prompts)
- ๐ **Total Primitives** - 25 tools at v2.3 (reduced from 28 at v2.2)
- ๐ก **Clearer Purpose** - Each workflow now has distinct, non-overlapping functionality
- ๐ **Context Efficiency** - Reduced total lines by ~30% while maintaining functionality
### 2.2.0 (2025-10-19) - AI Native-Instructions Architecture
- ๐๏ธ **Framework Implementation** - Full AI Native-Instructions Architecture compliance
- ๐ **Layer 1: Markdown Prompt Engineering** - Structured semantic markdown throughout
- ๐ง **Layer 2: Agent Primitives** - 28 configurable tools (Instructions, Modes, Prompts)
- ๐ฏ **Layer 3: Context Engineering** - `applyTo` patterns for modular context loading
- ๐ **AGENTS.md Ready** - Prepared for universal context compilation
- ๐ **Tool Boundaries** - Agents with explicit CAN/CANNOT security lists
- โ
**Validation Passing** - All 34 framework compliance checks passing
### 2.1.0 (2025-10-15)
- โจ Streamlined agents - Archived 5 duplicate modes
- ๐ฏ Focused toolkit - 6 core strategic agents
- ๐ Updated to 24 tools - Clearer separation of concerns
- ๐ Enhanced documentation - Practical examples integrated
### 2.0.0 (2025-01-15)
- โ
Full compliance with contribution guidelines
- โ
All files renamed to proper extensions
- โ
Collection manifest created
- โ
Validation script added
### 1.0.0 (2025-01-15)
- ๐ Initial release
- ๐ฆ 7 instructions, 10 prompts, 6 modes
## ๐ License
MIT License - see [LICENSE](./LICENSE) file for details.
## ๐ค Author
**javiarmesto**
- GitHub: [@javiarmesto](https://github.com/javiarmesto)
- Created: 2025-01-15
## ๐ Acknowledgments
- Microsoft Business Central team for AL language
- GitHub Copilot team for extensibility
- AL development community for patterns and best practices
- [Shep Alderson](https://github.com/ShepAlderson) for the [GitHub Copilot Orchestra pattern](https://github.com/ShepAlderson/copilot-orchestra)
## ๐ Support
- **Issues**: [GitHub Issues](https://github.com/javiarmesto/al-development-collection/issues)
- **Discussions**: [GitHub Discussions](https://github.com/javiarmesto/al-development-collection/discussions)
- **Documentation**: [al-development.md](./al-development.md)
---
**Status**: โ
AI Native-Instructions Architecture Compliant
**Framework**: [AI Native-Instructions Architecture](https://danielmeppiel.github.io/awesome-ai-native/)
**Last Updated**: 2025-11-14
**Collection ID**: `al-development`
**Version**: 2.8.0
**Total Primitives**: 37 (9 instructions + 18 workflows + 6 agents + 4 orchestra)
**Installation**: npm CLI (recommended) | Clone & Install
**Context Standard**: AGENTS.md ready
**Latest**: Workflow Simplification - Direct User โ al-architect โ al-conductor path