aicf-core
Version:
Universal AI Context Format (AICF) - Enterprise-grade AI memory infrastructure with 95.5% compression and zero semantic loss
136 lines (108 loc) • 6.21 kB
Markdown
# Project File Access Patterns & Context
> **🔒 PROTECTED FILE - Generated on 2025-10-05T17:30:44Z from Augment Data**
> **Data Recovery:** Rebuilding lost context from original create-ai-chat-context project
> **Source:** recentlyOpenedFiles.json (60+ tracked files)
## 📂 Active Development Areas (From File Access History)
### Core Project Structure
```
create-ai-chat-context/
├── .ai/ # Human-readable knowledge base
│ ├── conversation-log.md # Most accessed (primary history)
│ ├── technical-decisions.md # Architecture decisions
│ ├── next-steps.md # Current priorities
│ ├── known-issues.md # Bug tracking
│ └── architecture.md # System design
├── .aicf/ # AI-optimized formats (heavily accessed)
│ ├── conversations.aicf # Compressed conversation history
│ ├── index.aicf # Fast lookup metadata
│ ├── tasks.aicf # Compressed task tracking
│ ├── issues.aicf # Compressed issue tracking
│ └── .meta # Project metadata
├── src/ # Core implementation
│ ├── checkpoint-agent.js # (ARCHIVED - automated compression)
│ ├── config.js # Configuration management
│ ├── context-extractor.js # Context extraction utilities
│ └── search.js # Search functionality
├── bin/cli.js # CLI entry point (frequently modified)
└── docs/ # Documentation experiments
└── aicf-evaluation-findings.md # Format evaluation research
```
## 🔥 Most Frequently Accessed Files (From Augment Tracking)
### Primary Development Files:
1. **`.ai/conversation-log.md`** - Central conversation history (most critical)
2. **`bin/cli.js`** - CLI interface (frequent updates)
3. **`.aicf/conversations.aicf`** - AI-optimized conversation storage
4. **`src/checkpoint-agent.js`** - (Now archived - automated compression experiment)
### Active Experimentation Areas:
1. **`.aicf/checkpoint-queue/`** - Token compression testing (multiple test files)
- `TEST-GPT4O-raw.aicf`
- `checkpoint-20k-raw.aicf`
- Multiple test result files with different models
2. **`archive/abandoned-automated-compression/`** - Moved failed experiments
3. **`docs/LOGIC_AGENT_ORCHESTRATOR_DESIGN.md`** - Architecture planning
### Configuration & Setup:
- **`.env.local`** - Environment configuration (API keys)
- **`.env.example`** - Template for environment setup
- **`extract-warp-conversation.js`** - Cross-platform extraction (current work!)
## 📊 Development Pattern Analysis
### File Access Frequency Patterns:
- **Daily access**: conversation-log.md, cli.js, .aicf files
- **Weekly access**: technical-decisions.md, next-steps.md, architecture.md
- **Experimental access**: checkpoint-queue files, test files
- **Archive access**: Moved abandoned automation experiments
### Project Evolution Phases (From File Timeline):
1. **Initial CLI Development** - bin/cli.js, src/ files
2. **AI Format Experimentation** - .aicf/ directory creation
3. **Automated Compression Attempt** - checkpoint-agent.js (later archived)
4. **Manual Workflow Adoption** - Simplified .aicf approach
5. **Cross-Platform Integration** - extract-warp-conversation.js (current)
## 🔄 Active Development Context
### Current Focus Areas (From Recent File Access):
1. **Cross-Platform Extraction**: `extract-warp-conversation.js`
2. **Token Optimization**: Multiple .aicf test files
3. **Manual Workflow**: Simplified approach after abandoning automation
4. **Documentation**: Evaluation findings and design documents
### Abandoned Experiments (Moved to Archive):
- **Automated compression agents** - Too complex, user preferred manual approach
- **Complex checkpoint systems** - Overcomplicated token management
- **SDK integrations** - @anthropic-ai/sdk, openai installs later removed
### Key Insights from File Patterns:
- **Heavy .aicf experimentation** - Multiple test files indicate serious token optimization work
- **Iterative CLI development** - Frequent bin/cli.js updates show active feature development
- **Documentation-driven approach** - Many .md files indicate thorough documentation practices
- **Cleanup and archiving** - Clear separation of working vs abandoned code
## 🎯 File Relationship Map
### Core Knowledge Flow:
```
conversation-log.md → conversations.aicf → index.aicf
↓ ↓ ↓
technical-decisions.md → technical-context.aicf → .meta
↓ ↓ ↓
next-steps.md → tasks.aicf → work-state.aicf
```
### Development Workflow:
```
Local Development: Testing: Archive:
├── src/*.js → ├── test-*.js → └── archive/abandoned-*
├── bin/cli.js → ├── node bin/cli.js
└── .ai/*.md → └── npx aic [cmd]
```
## 🧠 Project Memory Context
### What File Patterns Tell Us:
1. **Token optimization was a major focus** - Extensive .aicf testing
2. **User prefers manual over automated** - Archived automation experiments
3. **Cross-platform integration current priority** - extract-warp-conversation.js
4. **Documentation is comprehensive** - Many .md files with detailed analysis
### Critical Files for Context Recovery:
- `conversation-log.md` - Contains full project history
- `.aicf/conversations.aicf` - Token-optimized conversation memory
- `command-execution-history` - Development progression (we extracted this!)
- `technical-decisions.md` - Architecture rationale
**File Access Summary:** 60+ files tracked, indicating active, experimental development focused on AI memory optimization and cross-platform integration. The current work on `extract-warp-conversation.js` aligns perfectly with the multi-platform universal AI knowledge strategy we're implementing.