UNPKG

aicf-core

Version:

Universal AI Context Format (AICF) - Enterprise-grade AI memory infrastructure with 95.5% compression and zero semantic loss

352 lines (277 loc) 10.3 kB
# Advanced Security Research for AICF Core ## Beyond Traditional Security: AI-Native Protection Strategies *Date: October 6, 2025* *Context: Post-Phase 0 security implementation analysis* ## Executive Summary While our Phase 0 security fixes address traditional vulnerabilities, AI systems require fundamentally different security paradigms. This research explores advanced protection strategies including cryptographic languages, AI-native security patterns, and quantum-resistant approaches. ## Current Security Foundation ### ✅ Implemented (Phase 0) - Path traversal prevention - Pipe injection sanitization - Race condition protection - Memory exhaustion safeguards - PII redaction - Input validation framework ### 🔬 Advanced Security Research Areas ## 1. Cryptographic Format Encoding (CFE) ### Concept: AI-Readable Cryptographic Language Instead of human-readable pipe-delimited format, use cryptographically secure encoding: ```javascript // Current AICF Format (vulnerable to analysis) "1|@CONVERSATION:conv_001" "2|timestamp_start=2025-10-06T14:30:00Z" // CFE Format (cryptographically protected) "A7F3E9CONV§:B2E8F4A1" "B2E8F5|∂ts_s∂=C9F7E2A8" ``` ### Benefits: - **Format Obfuscation**: Attackers can't easily identify structure - **Symbol Encoding**: Non-ASCII symbols prevent simple regex attacks - **Cryptographic Hashing**: Content hashes verify integrity - **AI-Optimized**: Still parseable by AI but opaque to humans ### Implementation Strategy: ```javascript class CryptographicFormatEncoder { constructor(secretKey) { this.cipher = crypto.createCipher('aes-256-gcm', secretKey); this.symbolMap = new Map([ ['@CONVERSATION', '§CONV§'], ['@INSIGHTS', '∞INS∞'], ['@STATE', '◊STATE◊'], ['timestamp_start', '∂ts_s∂'], ['|', '∆'] // Replace pipe delimiters ]); } encode(aicfLine) { // 1. Replace semantic markers with symbols let encoded = this.replaceWithSymbols(aicfLine); // 2. Hash identifiers encoded = this.hashIdentifiers(encoded); // 3. Encrypt sensitive content return this.encryptContent(encoded); } } ``` ## 2. Quantum-Resistant Security ### Post-Quantum Cryptography Integration Current RSA/AES encryption will be vulnerable to quantum computers. AICF should prepare: ```javascript // Lattice-based encryption for quantum resistance const crystalsDilithium = require('crystals-dilithium'); const crystalsKyber = require('crystals-kyber'); class QuantumResistantAICF { constructor() { // Digital signatures using Dilithium (NIST standard) this.keyPair = crystalsDilithium.keyGen(); // Key encapsulation using Kyber this.kemKeys = crystalsKyber.keyGen(); } signConversation(data) { return crystalsDilithium.sign(data, this.keyPair.privateKey); } verifyIntegrity(data, signature) { return crystalsDilithium.verify(signature, data, this.keyPair.publicKey); } } ``` ## 3. AI-Native Security Patterns ### Self-Healing Security System AI can monitor and adapt its own security: ```javascript class AISecurityMonitor { constructor() { this.threatPatterns = new Map(); this.adaptiveFilters = []; this.learningMode = true; } analyzeAccess(operation, data, context) { // Real-time threat analysis const threatScore = this.calculateThreatScore(operation, data); if (threatScore > 0.7) { // Automatically adapt security measures this.escalateProtection(operation); this.learnFromThreat(operation, data); } return threatScore < 0.5; // Allow if safe } learnFromThreat(operation, data) { // Self-improving security through pattern recognition const pattern = this.extractThreatPattern(operation, data); this.threatPatterns.set(pattern.hash, pattern); // Update filters dynamically this.updateAdaptiveFilters(pattern); } } ``` ### Semantic Security Validation AI can understand context and detect anomalous content: ```javascript class SemanticSecurityValidator { async validateConversationContent(messages) { // AI-powered content analysis const analysis = await this.analyzeSemanticPatterns(messages); return { containsMaliciousPatterns: analysis.threats.length > 0, confidenceScore: analysis.confidence, recommendedActions: analysis.mitigations, semanticFingerprint: analysis.fingerprint }; } async analyzeSemanticPatterns(content) { // Use transformer models to detect: // - Social engineering attempts // - Data exfiltration patterns // - Prompt injection attacks // - Behavioral anomalies return await this.runTransformerAnalysis(content); } } ``` ## 4. Steganographic Data Hiding ### Concept: Hide AICF Data in Plain Sight Instead of obvious file formats, embed data steganographically: ```javascript class SteganographicAICF { // Hide AICF data in: // - Image metadata (EXIF) // - Audio file silence patterns // - Text whitespace patterns // - Blockchain transaction comments hideInImage(aicfData, coverImage) { // LSB steganography in image pixels return this.embedInLSB(aicfData, coverImage); } hideInText(aicfData, coverText) { // Unicode steganography using zero-width characters return this.embedInUnicode(aicfData, coverText); } } ``` ## 5. Blockchain-Based Integrity ### Immutable Conversation History Store conversation hashes on blockchain for tamper-proof records: ```javascript class BlockchainAICF { constructor(web3Provider) { this.web3 = web3Provider; this.contract = new this.web3.eth.Contract(AICF_ABI, CONTRACT_ADDRESS); } async commitConversationHash(conversationId, dataHash) { // Store hash on blockchain for integrity verification const tx = await this.contract.methods .commitHash(conversationId, dataHash, Date.now()) .send({ from: this.account }); return tx.transactionHash; } async verifyIntegrity(conversationId, localData) { const localHash = crypto.createHash('sha256') .update(localData) .digest('hex'); const blockchainHash = await this.contract.methods .getHash(conversationId) .call(); return localHash === blockchainHash; } } ``` ## 6. Zero-Knowledge Proofs for Privacy ### Prove Knowledge Without Revealing Data Allow verification of conversation properties without exposing content: ```javascript class ZKProofAICF { // Prove conversation occurred without revealing content generateProofOfConversation(conversationData, secret) { // zk-SNARK proof that conversation meets criteria // without revealing actual content return zksnark.prove({ circuit: this.conversationCircuit, witness: { conversation: conversationData, secret: secret } }); } verifyConversationProof(proof, publicInputs) { // Verify proof without seeing private data return zksnark.verify(proof, publicInputs, this.verifyingKey); } } ``` ## 7. Homomorphic Encryption for Processing ### Compute on Encrypted Data Process AICF data while it remains encrypted: ```javascript class HomomorphicAICF { constructor() { this.scheme = new TFHE(); // Fully Homomorphic Encryption } encryptConversation(data) { // Encrypt data for processing return this.scheme.encrypt(data); } searchEncryptedConversations(encryptedData, encryptedQuery) { // Search without decrypting return this.scheme.homomorphicSearch(encryptedData, encryptedQuery); } analyzeWithoutDecryption(encryptedConversations) { // Perform analytics on encrypted data return this.scheme.homomorphicAnalytics(encryptedConversations); } } ``` ## 8. AI-Generated Security Policies ### Self-Modifying Security Rules AI generates and updates its own security policies: ```javascript class AutonomousSecurityGovernance { constructor() { this.policyGenerator = new AI_PolicyModel(); this.riskAssessor = new RiskAnalysisAI(); } async generateSecurityPolicy(context) { const riskProfile = await this.riskAssessor.analyze(context); const policy = await this.policyGenerator.create({ riskLevel: riskProfile.level, threatVectors: riskProfile.threats, dataClassification: context.classification }); return this.validateAndDeploy(policy); } async adaptToNewThreats(threatIntelligence) { // Automatically update security policies based on new threats const updatedPolicy = await this.policyGenerator.adapt( this.currentPolicy, threatIntelligence ); return this.hotDeploy(updatedPolicy); } } ``` ## Implementation Recommendations ### Phase 1: Cryptographic Format (Q1 2026) 1. **Symbol-based encoding** to replace pipe delimiters 2. **Content hashing** for integrity verification 3. **Format obfuscation** to prevent reverse engineering ### Phase 2: AI-Native Security (Q2 2026) 1. **Semantic validation** using transformer models 2. **Adaptive threat detection** with machine learning 3. **Self-healing security** systems ### Phase 3: Post-Quantum & Advanced (Q3-Q4 2026) 1. **Quantum-resistant encryption** migration 2. **Zero-knowledge proofs** for privacy 3. **Blockchain integration** for immutability ## Security Philosophy Shift ### From Reactive to Predictive - **Traditional**: Patch vulnerabilities after discovery - **AI-Native**: Predict and prevent before attacks occur ### From Static to Adaptive - **Traditional**: Fixed security rules - **AI-Native**: Self-modifying security policies ### From Visible to Invisible - **Traditional**: Obvious security measures - **AI-Native**: Steganographic and cryptographic hiding ## Conclusion AICF's future security should leverage AI's unique capabilities for self-protection, adaptive defense, and predictive threat mitigation. The cryptographic format encoding provides immediate benefits while quantum-resistant and AI-native approaches prepare for future threat landscapes. The goal is not just secure storage, but **intelligent security** that evolves with threats and leverages AI's pattern recognition for protection. --- *Next Steps: Prototype CFE (Cryptographic Format Encoding) as proof-of-concept for Phase 1 implementation.*