aicf-core
Version:
Universal AI Context Format (AICF) - Enterprise-grade AI memory infrastructure with 95.5% compression and zero semantic loss
352 lines (277 loc) • 10.3 kB
Markdown
# Advanced Security Research for AICF Core
## Beyond Traditional Security: AI-Native Protection Strategies
*Date: October 6, 2025*
*Context: Post-Phase 0 security implementation analysis*
## Executive Summary
While our Phase 0 security fixes address traditional vulnerabilities, AI systems require fundamentally different security paradigms. This research explores advanced protection strategies including cryptographic languages, AI-native security patterns, and quantum-resistant approaches.
## Current Security Foundation
### ✅ Implemented (Phase 0)
- Path traversal prevention
- Pipe injection sanitization
- Race condition protection
- Memory exhaustion safeguards
- PII redaction
- Input validation framework
### 🔬 Advanced Security Research Areas
## 1. Cryptographic Format Encoding (CFE)
### Concept: AI-Readable Cryptographic Language
Instead of human-readable pipe-delimited format, use cryptographically secure encoding:
```javascript
// Current AICF Format (vulnerable to analysis)
"1|@CONVERSATION:conv_001"
"2|timestamp_start=2025-10-06T14:30:00Z"
// CFE Format (cryptographically protected)
"A7F3E9|§CONV§:B2E8F4A1"
"B2E8F5|∂ts_s∂=C9F7E2A8"
```
### Benefits:
- **Format Obfuscation**: Attackers can't easily identify structure
- **Symbol Encoding**: Non-ASCII symbols prevent simple regex attacks
- **Cryptographic Hashing**: Content hashes verify integrity
- **AI-Optimized**: Still parseable by AI but opaque to humans
### Implementation Strategy:
```javascript
class CryptographicFormatEncoder {
constructor(secretKey) {
this.cipher = crypto.createCipher('aes-256-gcm', secretKey);
this.symbolMap = new Map([
['@CONVERSATION', '§CONV§'],
['@INSIGHTS', '∞INS∞'],
['@STATE', '◊STATE◊'],
['timestamp_start', '∂ts_s∂'],
['|', '∆'] // Replace pipe delimiters
]);
}
encode(aicfLine) {
// 1. Replace semantic markers with symbols
let encoded = this.replaceWithSymbols(aicfLine);
// 2. Hash identifiers
encoded = this.hashIdentifiers(encoded);
// 3. Encrypt sensitive content
return this.encryptContent(encoded);
}
}
```
## 2. Quantum-Resistant Security
### Post-Quantum Cryptography Integration
Current RSA/AES encryption will be vulnerable to quantum computers. AICF should prepare:
```javascript
// Lattice-based encryption for quantum resistance
const crystalsDilithium = require('crystals-dilithium');
const crystalsKyber = require('crystals-kyber');
class QuantumResistantAICF {
constructor() {
// Digital signatures using Dilithium (NIST standard)
this.keyPair = crystalsDilithium.keyGen();
// Key encapsulation using Kyber
this.kemKeys = crystalsKyber.keyGen();
}
signConversation(data) {
return crystalsDilithium.sign(data, this.keyPair.privateKey);
}
verifyIntegrity(data, signature) {
return crystalsDilithium.verify(signature, data, this.keyPair.publicKey);
}
}
```
## 3. AI-Native Security Patterns
### Self-Healing Security System
AI can monitor and adapt its own security:
```javascript
class AISecurityMonitor {
constructor() {
this.threatPatterns = new Map();
this.adaptiveFilters = [];
this.learningMode = true;
}
analyzeAccess(operation, data, context) {
// Real-time threat analysis
const threatScore = this.calculateThreatScore(operation, data);
if (threatScore > 0.7) {
// Automatically adapt security measures
this.escalateProtection(operation);
this.learnFromThreat(operation, data);
}
return threatScore < 0.5; // Allow if safe
}
learnFromThreat(operation, data) {
// Self-improving security through pattern recognition
const pattern = this.extractThreatPattern(operation, data);
this.threatPatterns.set(pattern.hash, pattern);
// Update filters dynamically
this.updateAdaptiveFilters(pattern);
}
}
```
### Semantic Security Validation
AI can understand context and detect anomalous content:
```javascript
class SemanticSecurityValidator {
async validateConversationContent(messages) {
// AI-powered content analysis
const analysis = await this.analyzeSemanticPatterns(messages);
return {
containsMaliciousPatterns: analysis.threats.length > 0,
confidenceScore: analysis.confidence,
recommendedActions: analysis.mitigations,
semanticFingerprint: analysis.fingerprint
};
}
async analyzeSemanticPatterns(content) {
// Use transformer models to detect:
// - Social engineering attempts
// - Data exfiltration patterns
// - Prompt injection attacks
// - Behavioral anomalies
return await this.runTransformerAnalysis(content);
}
}
```
## 4. Steganographic Data Hiding
### Concept: Hide AICF Data in Plain Sight
Instead of obvious file formats, embed data steganographically:
```javascript
class SteganographicAICF {
// Hide AICF data in:
// - Image metadata (EXIF)
// - Audio file silence patterns
// - Text whitespace patterns
// - Blockchain transaction comments
hideInImage(aicfData, coverImage) {
// LSB steganography in image pixels
return this.embedInLSB(aicfData, coverImage);
}
hideInText(aicfData, coverText) {
// Unicode steganography using zero-width characters
return this.embedInUnicode(aicfData, coverText);
}
}
```
## 5. Blockchain-Based Integrity
### Immutable Conversation History
Store conversation hashes on blockchain for tamper-proof records:
```javascript
class BlockchainAICF {
constructor(web3Provider) {
this.web3 = web3Provider;
this.contract = new this.web3.eth.Contract(AICF_ABI, CONTRACT_ADDRESS);
}
async commitConversationHash(conversationId, dataHash) {
// Store hash on blockchain for integrity verification
const tx = await this.contract.methods
.commitHash(conversationId, dataHash, Date.now())
.send({ from: this.account });
return tx.transactionHash;
}
async verifyIntegrity(conversationId, localData) {
const localHash = crypto.createHash('sha256')
.update(localData)
.digest('hex');
const blockchainHash = await this.contract.methods
.getHash(conversationId)
.call();
return localHash === blockchainHash;
}
}
```
## 6. Zero-Knowledge Proofs for Privacy
### Prove Knowledge Without Revealing Data
Allow verification of conversation properties without exposing content:
```javascript
class ZKProofAICF {
// Prove conversation occurred without revealing content
generateProofOfConversation(conversationData, secret) {
// zk-SNARK proof that conversation meets criteria
// without revealing actual content
return zksnark.prove({
circuit: this.conversationCircuit,
witness: {
conversation: conversationData,
secret: secret
}
});
}
verifyConversationProof(proof, publicInputs) {
// Verify proof without seeing private data
return zksnark.verify(proof, publicInputs, this.verifyingKey);
}
}
```
## 7. Homomorphic Encryption for Processing
### Compute on Encrypted Data
Process AICF data while it remains encrypted:
```javascript
class HomomorphicAICF {
constructor() {
this.scheme = new TFHE(); // Fully Homomorphic Encryption
}
encryptConversation(data) {
// Encrypt data for processing
return this.scheme.encrypt(data);
}
searchEncryptedConversations(encryptedData, encryptedQuery) {
// Search without decrypting
return this.scheme.homomorphicSearch(encryptedData, encryptedQuery);
}
analyzeWithoutDecryption(encryptedConversations) {
// Perform analytics on encrypted data
return this.scheme.homomorphicAnalytics(encryptedConversations);
}
}
```
## 8. AI-Generated Security Policies
### Self-Modifying Security Rules
AI generates and updates its own security policies:
```javascript
class AutonomousSecurityGovernance {
constructor() {
this.policyGenerator = new AI_PolicyModel();
this.riskAssessor = new RiskAnalysisAI();
}
async generateSecurityPolicy(context) {
const riskProfile = await this.riskAssessor.analyze(context);
const policy = await this.policyGenerator.create({
riskLevel: riskProfile.level,
threatVectors: riskProfile.threats,
dataClassification: context.classification
});
return this.validateAndDeploy(policy);
}
async adaptToNewThreats(threatIntelligence) {
// Automatically update security policies based on new threats
const updatedPolicy = await this.policyGenerator.adapt(
this.currentPolicy,
threatIntelligence
);
return this.hotDeploy(updatedPolicy);
}
}
```
## Implementation Recommendations
### Phase 1: Cryptographic Format (Q1 2026)
1. **Symbol-based encoding** to replace pipe delimiters
2. **Content hashing** for integrity verification
3. **Format obfuscation** to prevent reverse engineering
### Phase 2: AI-Native Security (Q2 2026)
1. **Semantic validation** using transformer models
2. **Adaptive threat detection** with machine learning
3. **Self-healing security** systems
### Phase 3: Post-Quantum & Advanced (Q3-Q4 2026)
1. **Quantum-resistant encryption** migration
2. **Zero-knowledge proofs** for privacy
3. **Blockchain integration** for immutability
## Security Philosophy Shift
### From Reactive to Predictive
- **Traditional**: Patch vulnerabilities after discovery
- **AI-Native**: Predict and prevent before attacks occur
### From Static to Adaptive
- **Traditional**: Fixed security rules
- **AI-Native**: Self-modifying security policies
### From Visible to Invisible
- **Traditional**: Obvious security measures
- **AI-Native**: Steganographic and cryptographic hiding
## Conclusion
AICF's future security should leverage AI's unique capabilities for self-protection, adaptive defense, and predictive threat mitigation. The cryptographic format encoding provides immediate benefits while quantum-resistant and AI-native approaches prepare for future threat landscapes.
The goal is not just secure storage, but **intelligent security** that evolves with threats and leverages AI's pattern recognition for protection.
---
*Next Steps: Prototype CFE (Cryptographic Format Encoding) as proof-of-concept for Phase 1 implementation.*