UNPKG

ai-workflow-utils

Version:

A comprehensive automation platform that streamlines software development workflows by integrating AI-powered content generation with popular development tools like Jira, Bitbucket, and email systems. Includes startup service management for automatic syst

1,009 lines (723 loc) 28 kB
# 🚀 AI Workflow Utils <div align="center"> ![AI Workflow Utils](https://img.shields.io/npm/v/ai-workflow-utils?style=for-the-badge) ![Node.js](https://img.shields.io/badge/Node.js-20%2B-green?style=for-the-badge) ![React](https://img.shields.io/badge/React-18-blue?style=for-the-badge) ![LangChain](https://img.shields.io/badge/LangChain-Supported-orange?style=for-the-badge) ![Express.js](https://img.shields.io/badge/Express.js-5.x-black?style=for-the-badge) ![License](https://img.shields.io/badge/License-MIT-yellow?style=for-the-badge) **The Ultimate AI-Powered Development Workflow Automation Platform** _Streamline your development process with intelligent Jira ticket creation, AI-powered code reviews & pull request creation with custom template support, featuring a beautiful dark/light theme interface_ <img width="1920" height="1484" alt="AI-Workflow-Utils-08-21-2025_03_39_PM" src="https://github.com/user-attachments/assets/87243a4f-d44d-460f-80c6-60d9624d0e00" /> </div> ## 🎉 **NEW IN v1.x.x - Game-Changing Features!** ### 🎯 **Feature #1: AI-Powered Jira Ticket Creation** Create professional Jira tickets (Tasks, Bugs, Stories) using AI with multiple provider support: - **🤖 OpenAI Compatible APIs**: GPT-4, Claude, and other cloud providers - **🏠 Local AI with Ollama LLaVA**: Complete privacy with local image analysis - **📸 Smart Image Analysis**: Upload screenshots and get detailed issue descriptions - **⚡ Real-time Streaming**: Watch AI generate content live - **🎨 Professional Templates**: Auto-formatted with proper sections and acceptance criteria - **🔗 Direct Jira Integration**: Creates tickets instantly with your access token ### 🚀 **Feature #2: AI-Powered Pull Request Creation** Revolutionary AI-powered pull request creation for Atlassian Bitbucket: - **🤖 Intelligent PR Generation**: AI analyzes commit messages to create professional PR titles and descriptions - **📝 Smart Commit Analysis**: Automatically determines PR type (feat/fix/chore) based on commit patterns - **⚡ Real-time Streaming**: Watch AI generate PR content live with streaming updates - **🔄 Multi-Model Support**: Uses Ollama for local AI processing with privacy - **✏️ Editable Previews**: Review and edit AI-generated content before creating the PR - **💾 Smart Persistence**: Remembers project and repository settings for faster workflow ### 🔍 **Feature #3: AI-Powered Code Review** Revolutionary AI-powered pull request reviews for Atlassian Bitbucket: - **🧠 Intelligent Code Analysis**: AI reviews your code changes - **💡 Smart Suggestions**: Get actionable improvement recommendations - **🔄 Multi-Model Support**: OpenAI Compatible APIs + Ollama for flexibility - **⚡ Coming Soon**: AI adds review comments directly to your PRs - **⚡ Coming Soon**: Direct comment integration ### 📊 **Feature #4: Real-time Logs & Monitoring** Comprehensive logging and monitoring system for troubleshooting and system insights: - **📋 Real-time Log Streaming**: Live view of application logs with automatic updates - **🔍 Advanced Filtering**: Filter logs by level (Error, Warn, Info, Debug) and search by content - **📅 Log History**: Access historical logs with pagination and date filtering - **🎨 Syntax Highlighting**: Color-coded log levels for easy identification - **💾 Log Management**: Automatic log rotation and size management - **🔧 Debug Mode**: Enable detailed debug logging for troubleshooting - **📱 Responsive Design**: Access logs from any device with mobile-friendly interface ### 🧩 **Feature #5: Universal API Client (NEW!)** The new **API Client** module provides a flexible, general-purpose interface for making API requests to any service (Jira, Bitbucket, email, or custom endpoints). - **🔗 Universal API Requests**: Send requests to any configured endpoint - **⚡ CLI & Server Support**: Use via CLI or `/api/api-client` endpoint - **🛠️ Modular Architecture**: Easily extend for new APIs - **🔒 Secure & Configurable**: Manage endpoints in `~/.ai-workflow-utils/environment.json` - **📋 Error Handling & Logging**: Built-in reliability > **Coming Soon:** AI-powered automation, script generation, and smart workflow integration will be added in future releases. ### **🌙 Feature #6: Intelligent Dark Theme System** Beautiful, adaptive interface that automatically adjusts to your preferences: - **🌓 Auto Theme Detection**: Automatically follows your system's dark/light mode preference - **🎨 Manual Theme Control**: Switch between Light, Dark, and Auto modes with a single click - **🎭 Persistent Preferences**: Your theme choice is remembered across sessions - **🌈 Gradient Design System**: Stunning gradient backgrounds and glass-morphism effects - **📱 Consistent Theming**: Dark theme support across all components and pages - **👁️ Eye-friendly**: Carefully crafted colors that reduce eye strain during long sessions - **🔄 Smooth Transitions**: Elegant animations when switching between themes ### **🔗 Feature #6: MCP Client Configuration** Advanced Model Context Protocol (MCP) client management for seamless AI tool integration: - **🛠️ Comprehensive Client Management**: Create, configure, and manage multiple MCP clients - **🌐 Flexible Connection Types**: Support for both remote URL-based and local command-based MCP servers - **🔐 Secure Authentication**: Token-based authentication with secure credential storage - **⚡ Real-time Testing**: Test MCP client connections instantly to ensure proper configuration - **📝 Client Documentation**: Add descriptions and metadata for organized client management - **🔄 Enable/Disable Toggle**: Easily activate or deactivate clients without deletion - **🏗️ LangChain Integration**: Seamless integration with LangChain MCP adapters for AI workflows --- ## 🚀 Quick Start Guide ### **Step 1: Recommended - Ollama Setup (For Local AI)** ```bash # Install Ollama (if you want local AI processing) # macOS brew install ollama # Linux curl -fsSL https://ollama.com/install.sh | sh # Windows - Download from https://ollama.com/ # Download the LLaVA model for image analysis ollama pull llava # Start Ollama service ollama serve ``` Then configure Ollama as your AI provider in the web interface. ### **Step 2: Installation** ```bash npm install -g ai-workflow-utils ``` ### **Step 3: Permission Setup (Important!)** The application includes file upload functionality that requires proper permissions. Check if your setup is ready: ```bash # Check if the application has necessary permissions ai-workflow-utils check-permissions ``` If you see permission warnings: ```bash # Option 1: Fix project directory permissions sudo chown -R $USER:$USER ~/.npm mkdir -p ~/ai-workflow-utils && cd ~/ai-workflow-utils # Option 2: Use a custom upload directory export UPLOAD_DIR=~/ai-workflow-utils/uploads ``` 📖 **For detailed setup instructions, see [DEPLOYMENT.md](DEPLOYMENT.md)** ### **Step 4: Launch the Application** ```bash # Start the application directly ai-workflow-utils ``` The application will start immediately and be available at `http://localhost:3000` ### **Step 5: (Optional) Install as Startup Service** For production use or to run automatically on system boot: ```bash ai-workflow-utils startup install ``` The service will now start automatically on boot. Access at `http://localhost:3000` **Startup Service Management:** ```bash ai-workflow-utils startup status # Check service status ai-workflow-utils startup start # Start the service ai-workflow-utils startup stop # Stop the service ai-workflow-utils startup uninstall # Remove startup service ``` ### **Step 6: (Optional) PWA Installation (Progressive Web App)** ``` **Supported Platforms:** - **macOS**: Uses LaunchAgents (user-level service) - **Windows**: Uses Windows Service Manager - **Linux**: Uses systemd For detailed startup service documentation, see [STARTUP.md](STARTUP.md) ### **Step 5: Configure Using the Settings Page** All configuration is managed through the web-based settings page: - Visit [`http://localhost:3000/settings/environment`](http://localhost:3000/settings/environment) - Configure your AI provider (Anthropic Claude, OpenAI GPT, Google Gemini, Ollama) - Set up Jira integration (URL, API token) - Configure repository provider (Bitbucket) - Set up issue tracking (Jira, etc.) - Configure MCP clients for Model Context Protocol integration All changes are saved to `~/.ai-workflow-utils/environment.json` and persist across upgrades. **No manual .env setup required!** ### **Step 6: (Optional) PWA Installation (Progressive Web App)** **AI Workflow Utils is a fully-featured PWA!** Install it as a native app for the best experience: **🖥️ Desktop Installation:** 1. Open `http://localhost:3000` in Chrome, Edge 2. Look for the "Install" button in the address bar 3. Click "Install" to add AI Workflow Utils to your desktop 4. Launch directly from your desktop/dock - no browser needed! **✨ PWA Benefits:** - **🚀 Faster Loading**: Cached resources for instant startup - **📱 Native Feel**: Works like a desktop - **🔄 Auto Updates**: Always get the latest features - **💾 Offline Ready**: Basic functionality works without internet - **🎯 Focused Experience**: No browser distractions --- <details> <summary><strong>🎯 Feature Deep Dive</strong></summary> ### **🎫 AI Jira Ticket Creation** **What makes it special:** - **Dual AI System**: Primary cloud AI with local Ollama fallback - **Image Intelligence**: Upload screenshots and get detailed bug reports - **Smart Templates**: Automatically formats content based on issue type - **Real-time Generation**: Watch AI create your tickets live **Example Usage:** 1. Navigate to "Create Jira" 2. Describe your issue: _"Login button doesn't work on mobile"_ 3. Upload a screenshot (optional) 4. Select issue type (Bug/Task/Story) 5. Watch AI generate professional content 6. Review and create ticket directly in Jira **AI Providers Supported:** - **OpenAI GPT-4** (with vision) - **Anthropic Claude** (with vision) - **Any OpenAI-compatible API** - **Ollama LLaVA** (local, private) ### **🚀 AI-Powered Pull Request Creation** **Revolutionary PR Generation:** - **Smart Commit Analysis**: AI analyzes your commit messages to understand the changes - **Automatic Type Detection**: Determines if changes are features, fixes, or chores - **Professional Formatting**: Generates conventional commit-style titles (feat/fix/chore) - **Streaming Generation**: Watch AI create content in real-time with live updates - **Local AI Processing**: Uses Ollama for complete privacy and offline capability **How it works:** 1. Navigate to "Create PR" 2. Enter project key, repository slug, ticket number, and branch name 3. Click "Preview" to start AI generation 4. Watch AI analyze commits and generate title/description in real-time 5. Edit the generated content if needed 6. Click "Create Pull Request" to submit to Bitbucket **AI Features:** - **Commit Message Analysis**: Extracts meaningful information from commit history - **Smart Categorization**: Automatically prefixes with feat/fix/chore based on content - **Ticket Integration**: Includes ticket numbers in standardized format - **Editable Previews**: Full control over final content before submission - **Persistent Settings**: Remembers project and repo settings for faster workflow ### **🔍 AI Code Review** **Revolutionary Code Review:** - **Context-Aware Analysis**: AI understands your codebase - **Security Scanning**: Identifies potential vulnerabilities - **Performance Optimization**: Suggests efficiency improvements - **Best Practices**: Enforces coding standards **How it works:** 1. Open a pull request in Bitbucket 2. Navigate to "GitStash Review" 3. Enter PR details 4. AI analyzes code changes 5. Get detailed review with suggestions 6. _Coming Soon_: Direct comment integration ### **📊 Real-time Logs & Monitoring** **Comprehensive System Monitoring:** - **Live Log Streaming**: Real-time log updates without page refresh - **Multi-level Filtering**: Filter by Error, Warn, Info, Debug levels - **Smart Search**: Full-text search across all log entries - **Historical Access**: Browse past logs with pagination - **Performance Insights**: Monitor API calls, response times, and system health **How it works:** 1. Navigate to "Logs" in the web interface 2. Select log level filters (All, Error, Warn, Info, Debug) 3. Use search to find specific entries or error messages 4. View real-time updates as the system operates 5. Access historical logs for troubleshooting past issues **Monitoring Features:** - **Error Tracking**: Immediate visibility into system errors - **API Monitoring**: Track AI provider calls and response times - **User Activity**: Monitor feature usage and workflow patterns - **System Health**: Resource usage and performance metrics - **Debug Support**: Detailed logging for development and troubleshooting </details> <!-- Manual environment setup is deprecated. All configuration should be done via the web-based settings page. --> --- </details> --- <details> <summary><strong>🏗️ Technical Architecture & Development</strong></summary> ### **🧩 Functional Programming Architecture** AI Workflow Utils follows **functional programming principles** throughout the codebase: - **Pure Functions**: Side-effect free functions with predictable outputs - **Immutable State Management**: State updates create new objects instead of mutations - **Function Composition**: Small, composable functions that work together - **No Classes**: Functional approach instead of object-oriented programming - **Separation of Concerns**: Each module has a specific, well-defined responsibility **Benefits:** - **Easier Testing**: Pure functions are simple to test and reason about - **Better Maintainability**: Predictable code flow and reduced complexity - **Improved Reliability**: Immutable state prevents many common bugs - **Enhanced Debugging**: Clear data flow makes debugging straightforward ### **🎭 Mock-First Development** **Comprehensive Jira Mocking Service** for development and testing: ```bash # Enable mock mode (no real API calls) JIRA_MOCK_MODE=true # Use real Jira API JIRA_MOCK_MODE=false ``` **Mock Service Features:** - **Realistic API Responses**: Mock data that matches real Jira API structure - **Stateful Operations**: Created issues, comments, and attachments persist in memory - **Complete CRUD Support**: Create, read, update, delete operations - **Advanced Features**: JQL search, issue transitions, field validation - **Error Simulation**: Test error handling with realistic error responses - **Fast Development**: No external dependencies for development/testing **Functional Mock Architecture:** ```javascript // Pure state management const getMockState = () => ({ ...mockState }); const updateMockState = updates => ({ ...mockState, ...updates }); // Functional API operations export const createIssue = async issueData => { /* pure function */ }; export const getIssue = async issueKey => { /* pure function */ }; export const searchIssues = async jql => { /* pure function */ }; ``` ### **📁 Modular Architecture** ``` server/ ├── controllers/ # Feature-based controllers ├── jira/ # Jira integration ├── services/ # Business logic services ├── models/ # Data models ├── utils/ # Utility functions └── README.md # Module documentation ├── pull-request/ # PR creation & review ├── email/ # Email generation ├── chat/ # AI chat integration └── mcp/ # Model Context Protocol client management ├── mocks/ # Mock services (excluded from npm package) └── jira/ # Comprehensive Jira mocking └── services/ # Shared services ``` **Each module follows the same structure:** - **Services**: Core business logic (functional) - **Models**: Data transformation and validation - **Utils**: Pure utility functions - **README.md**: Complete module documentation ### **🔧 Development Best Practices** - **ESLint Integration**: Enforces functional programming patterns - **Modular Design**: Each feature is self-contained - **Comprehensive Documentation**: Every module has detailed README - **Mock-First Testing**: Develop without external dependencies - **Environment Variables**: Configuration through environment - **Type Safety**: JSDoc annotations for better IDE support </details> --- <details> <summary><strong>🛠️ CLI Commands (For Advanced Users)</strong></summary> ### **Setup and Configuration** ```bash # Interactive setup wizard ai-workflow-setup # Check configuration ai-workflow-utils --config # Test connections ai-workflow-utils --test ``` ### **Development Commands** ```bash # Start in development mode ai-workflow-utils --dev # Enable debug logging ai-workflow-utils --debug # Specify custom port ai-workflow-utils --port 8080 # View logs in real-time ai-workflow-utils --logs # Clear log files ai-workflow-utils --clear-logs ``` ### **Ollama Management** ```bash # Check Ollama status ai-workflow-utils --ollama-status # Download recommended models ai-workflow-utils --setup-ollama # List available models ollama list ``` </details> --- <details> <summary><strong>🔧 Advanced Configuration (For Developers)</strong></summary> ### **AI Provider Fallback System** ```javascript // Automatic fallback order: 1. OpenAI Compatible API (Primary) 2. Ollama LLaVA (Local fallback) 3. Error handling with user notification ``` ### **Custom Model Configuration** ```env # For different OpenAI-compatible providers: OPENAI_COMPATIBLE_MODEL=gpt-4-vision-preview # OpenAI OPENAI_COMPATIBLE_MODEL=claude-3-sonnet-20240229 # Anthropic OPENAI_COMPATIBLE_MODEL=llama-2-70b-chat # Custom API # For Ollama local models: OLLAMA_MODEL=llava:13b # Larger model for better quality OLLAMA_MODEL=llava:7b # Faster, smaller model OLLAMA_MODEL=codellama:7b # Code-focused model ``` ### **Performance Tuning** ```env # Streaming configuration STREAM_CHUNK_SIZE=1024 STREAM_TIMEOUT=60000 # Rate limiting API_RATE_LIMIT=100 API_RATE_WINDOW=900000 # File upload limits MAX_FILE_SIZE=50MB ALLOWED_FILE_TYPES=jpg,jpeg,png,gif,mp4,mov,pdf,doc,docx # Logging configuration LOG_LEVEL=info # error, warn, info, debug LOG_MAX_SIZE=10MB # Maximum log file size LOG_MAX_FILES=5 # Number of rotated log files LOG_RETENTION_DAYS=30 # Days to keep log files ENABLE_REQUEST_LOGGING=true # Log all HTTP requests ``` </details> --- <details> <summary><strong>🚀 Production Deployment (For DevOps)</strong></summary> ### **Docker Deployment** ```bash # Build the application npm run build # Create Docker image docker build -t ai-workflow-utils . # Run container docker run -p 3000:3000 --env-file .env ai-workflow-utils ``` ### **PM2 Process Management** ```bash # Install PM2 npm install -g pm2 # Start application pm2 start ecosystem.config.js # Monitor pm2 monit # View logs pm2 logs ai-workflow-utils ``` ### **Nginx Reverse Proxy** ```nginx server { listen 80; server_name your-domain.com; location / { proxy_pass http://localhost:3000; proxy_http_version 1.1; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection 'upgrade'; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-Forwarded-Proto $scheme; proxy_cache_bypass $http_upgrade; } } ``` </details> --- <details> <summary><strong>🔒 Security & Privacy</strong></summary> ### **Data Privacy** - **Local AI Processing**: Use Ollama for complete data privacy - **No Data Storage**: AI conversations are not stored - **Secure Tokens**: Environment-based credential management - **HTTPS Support**: SSL/TLS encryption for production ### **Security Features** - **Rate Limiting**: Prevents API abuse - **Input Validation**: Sanitizes all user inputs - **Error Handling**: No sensitive data in error messages - **Access Control**: Token-based authentication </details> --- <details> <summary><strong>📊 Monitoring & Analytics (For DevOps)</strong></summary> ### **Built-in Monitoring** - **Health Checks**: `/health` endpoint for monitoring - **Performance Metrics**: Response times and success rates - **Error Tracking**: Comprehensive error logging - **Usage Statistics**: AI provider usage analytics ### **Logging Configuration** ```env # Logging levels: error, warn, info, debug LOG_LEVEL=info # Log file rotation LOG_MAX_SIZE=10MB LOG_MAX_FILES=5 # Enable request logging LOG_REQUESTS=true ``` </details> --- <details> <summary><strong>🤝 Contributing (For Developers)</strong></summary> We welcome contributions! Here's how to get started: ### **Development Setup** ```bash # Clone the repository git clone https://github.com/anuragarwalkar/ai-workflow-utils.git cd ai-workflow-utils # Install dependencies npm install # Set up environment cp .env.example .env cp ui/.env.example ui/.env # Start development server npm run dev ``` ### **Project Structure** ``` ai-workflow-utils/ ├── bin/ # CLI scripts ├── server/ # Backend (Node.js + Express) ├── ui/ # Frontend (React + Redux) ├── dist/ # Built files └── docs/ # Documentation ``` ### **Contribution Guidelines** 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests if applicable 5. Submit a pull request </details> --- <details> <summary><strong>📝 API Documentation (For Developers)</strong></summary> ### **Core Endpoints** **Jira Ticket Creation:** ```bash POST /api/jira/preview Content-Type: application/json { "prompt": "Login button not working", "images": ["base64-encoded-image"], "issueType": "Bug" } ``` **Create Pull Request Preview (Streaming):** ```bash POST /api/pr/stream-preview Content-Type: application/json { "projectKey": "PROJ", "repoSlug": "my-repo", "ticketNumber": "PROJ-123", "branchName": "feature/my-branch" } # Returns Server-Sent Events stream with: # - status updates # - title_chunk events (streaming title generation) # - title_complete event (final title) # - description_chunk events (streaming description generation) # - description_complete event (final description) # - complete event (final preview data) ``` **Create Pull Request:** ```bash POST /api/pr/create Content-Type: application/json { "projectKey": "PROJ", "repoSlug": "my-repo", "ticketNumber": "PROJ-123", "branchName": "feature/my-branch", "customTitle": "feat(PROJ-123): Add user authentication", "customDescription": "## Summary\nAdded user authentication feature\n\n## Changes Made\n- Added login component\n- Implemented JWT tokens" } ``` **GitStash PR Review:** ```bash POST /api/pr/review Content-Type: application/json { "repoUrl": "https://bitbucket.company.com/projects/PROJ/repos/repo", "pullRequestId": "123", "reviewType": "security" } ``` **File Upload:** ```bash POST /api/jira/upload Content-Type: multipart/form-data file: [binary-data] issueKey: "PROJ-123" ``` **MCP Client Management:** ```bash # Get all MCP clients GET /api/mcp/clients # Create new MCP client POST /api/mcp/clients Content-Type: application/json { "name": "My MCP Server", "url": "http://localhost:8080/mcp", "token": "optional-auth-token", "description": "Local MCP server for custom tools", "enabled": true } # Update MCP client PUT /api/mcp/clients/:id Content-Type: application/json { "name": "Updated MCP Server", "enabled": false } # Delete MCP client DELETE /api/mcp/clients/:id # Test MCP client connection POST /api/mcp/clients/:id/test ``` </details> --- <details> <summary><strong>🆘 Troubleshooting (For Support)</strong></summary> ### **Common Issues** **Ollama Connection Failed:** ```bash # Check if Ollama is running ollama list # Start Ollama service ollama serve # Pull required model ollama pull llava ``` **Jira Authentication Error:** ```bash # Test Jira connection curl -H "Authorization: Bearer YOUR_TOKEN" \ https://your-company.atlassian.net/rest/api/2/myself ``` **Port Already in Use:** ```bash # Use different port ai-workflow-utils --port 8080 # Or kill existing process lsof -ti:3000 | xargs kill -9 ``` ### **Debug Mode** ```bash # Enable detailed logging ai-workflow-utils --debug # Check logs tail -f logs/app.log ``` </details> --- ## 📞 **Support** ### **Getting Help** - **📖 Documentation**: [GitHub Wiki](https://github.com/anuragarwalkar/ai-workflow-utils/wiki) - **🐛 Bug Reports**: [GitHub Issues](https://github.com/anuragarwalkar/ai-workflow-utils/issues) - **💬 Discussions**: [GitHub Discussions](https://github.com/anuragarwalkar/ai-workflow-utils/discussions) - **📧 Email**: anurag.arwalkar@gmail.com ### **Community** - **⭐ Star us on GitHub**: Show your support! - **🔄 Share**: Help others discover this tool - **🤝 Contribute**: Join our growing community --- ## 📈 **Roadmap** ### **Coming Soon** - **🔗 Direct PR Comments**: AI comments directly in Bitbucket - **🔄 Workflow Automation**: Custom automation workflows - **📊 Analytics Dashboard**: Usage insights and metrics - **🔌 Plugin System**: Extensible architecture - **🌐 Multi-language Support**: Internationalization ### **Future Features** - **🤖 Advanced AI Agents**: Specialized AI for different tasks - **🔗 More Integrations**: GitHub, GitLab, Azure DevOps - **📱 Mobile App**: Native mobile applications - **🎯 Smart Routing**: Intelligent task assignment --- ## 📄 **License** This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. --- ## 🎖️ **Acknowledgments** Special thanks to the amazing open-source community and the following technologies that make this project possible: - **🤖 OpenAI & Anthropic**: For providing excellent AI APIs - **🏠 Ollama**: For enabling local AI processing with privacy - **🎯 Atlassian**: For robust Jira and Bitbucket APIs - **⚛️ React & Redux**: For building beautiful, responsive UIs - **🚀 Node.js & Express**: For reliable backend infrastructure - **🎨 Material-UI**: For professional design components --- ## 🌟 **Why Choose AI Workflow Utils?** ### **🚀 Productivity Boost** - **10x Faster**: Create professional Jira tickets in seconds - **AI-Powered**: Let AI handle the heavy lifting - **Streamlined**: One tool for all your workflow needs ### **🔒 Privacy First** - **Local Processing**: Use Ollama for complete data privacy - **No Vendor Lock-in**: Multiple AI provider support - **Your Data**: Stays on your infrastructure ### **🛠️ Developer Friendly** - **Easy Setup**: Get started in minutes - **CLI Tools**: Powerful command-line interface - **Extensible**: Open architecture for customization ### **💼 Enterprise Ready** - **Scalable**: Handles teams of any size - **Secure**: Enterprise-grade security features - **Reliable**: Battle-tested in production environments --- <div align="center"> ## 🚀 **Ready to Transform Your Workflow?** ### **Get Started Today!** ```bash npm install -g ai-workflow-utils ``` **⭐ Star us on GitHub if this tool helps you!** **📢 Share with your team and boost everyone's productivity!** --- **Made with ❤️ by [Anurag Arwalkar](https://github.com/anuragarwalkar)** _Empowering developers worldwide with AI-powered workflow automation_ </div>