UNPKG

ai-face-detection

Version:

This is simple face detection using face-api.js and tensorflow.js

280 lines (279 loc) 9.45 kB
[ { "weights": [ { "name": "dense0/conv0/filters", "shape": [3, 3, 3, 32], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.008194216092427571, "min": -0.9423348506291708 } }, { "name": "dense0/conv0/bias", "shape": [32], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.006839508168837603, "min": -0.8412595047670252 } }, { "name": "dense0/conv1/depthwise_filter", "shape": [3, 3, 32, 1], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.009194007106855804, "min": -1.2779669878529567 } }, { "name": "dense0/conv1/pointwise_filter", "shape": [1, 1, 32, 32], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.0036026100317637128, "min": -0.3170296827952067 } }, { "name": "dense0/conv1/bias", "shape": [32], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.000740380117706224, "min": -0.06367269012273527 } }, { "name": "dense0/conv2/depthwise_filter", "shape": [3, 3, 32, 1], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 1, "min": 0 } }, { "name": "dense0/conv2/pointwise_filter", "shape": [1, 1, 32, 32], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 1, "min": 0 } }, { "name": "dense0/conv2/bias", "shape": [32], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.0037702228508743585, "min": -0.6220867703942692 } }, { "name": "dense1/conv0/depthwise_filter", "shape": [3, 3, 32, 1], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.0033707996209462483, "min": -0.421349952618281 } }, { "name": "dense1/conv0/pointwise_filter", "shape": [1, 1, 32, 64], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.014611541991140328, "min": -1.8556658328748217 } }, { "name": "dense1/conv0/bias", "shape": [64], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.002832523046755323, "min": -0.30307996600281956 } }, { "name": "dense1/conv1/depthwise_filter", "shape": [3, 3, 64, 1], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.006593170586754294, "min": -0.6329443763284123 } }, { "name": "dense1/conv1/pointwise_filter", "shape": [1, 1, 64, 64], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.012215249211180444, "min": -1.6001976466646382 } }, { "name": "dense1/conv1/bias", "shape": [64], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.002384825547536214, "min": -0.3028728445370992 } }, { "name": "dense1/conv2/depthwise_filter", "shape": [3, 3, 64, 1], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.005859645441466687, "min": -0.7617539073906693 } }, { "name": "dense1/conv2/pointwise_filter", "shape": [1, 1, 64, 64], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.013121426806730382, "min": -1.7845140457153321 } }, { "name": "dense1/conv2/bias", "shape": [64], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.0032247188044529336, "min": -0.46435950784122243 } }, { "name": "dense2/conv0/depthwise_filter", "shape": [3, 3, 64, 1], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.002659512618008782, "min": -0.32977956463308894 } }, { "name": "dense2/conv0/pointwise_filter", "shape": [1, 1, 64, 128], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.015499923743453681, "min": -1.9839902391620712 } }, { "name": "dense2/conv0/bias", "shape": [128], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.0032450980999890497, "min": -0.522460794098237 } }, { "name": "dense2/conv1/depthwise_filter", "shape": [3, 3, 128, 1], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.005911862382701799, "min": -0.792189559282041 } }, { "name": "dense2/conv1/pointwise_filter", "shape": [1, 1, 128, 128], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.021025861478319356, "min": -2.2077154552235325 } }, { "name": "dense2/conv1/bias", "shape": [128], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.00349616945958605, "min": -0.46149436866535865 } }, { "name": "dense2/conv2/depthwise_filter", "shape": [3, 3, 128, 1], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.008104994250278847, "min": -1.013124281284856 } }, { "name": "dense2/conv2/pointwise_filter", "shape": [1, 1, 128, 128], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.029337059282789044, "min": -3.5791212325002633 } }, { "name": "dense2/conv2/bias", "shape": [128], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.0038808938334969913, "min": -0.4230174278511721 } }, { "name": "fc/weights", "shape": [128, 136], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.014016061670639936, "min": -1.8921683255363912 } }, { "name": "fc/bias", "shape": [136], "dtype": "float32", "quantization": { "dtype": "uint8", "scale": 0.0029505149698724935, "min": 0.088760145008564 } } ], "paths": ["face_landmark_68_tiny_model-shard1"] } ]