UNPKG

ai-assisted-template

Version:

Comprehensive AI-assisted development template with Claude Code integration

334 lines (281 loc) 15.8 kB
--- version: "0.1.0" created: "2025-09-15" last_updated: "2025-09-15" status: "active" target_audience: ["all-stakeholders", "developers", "ai-assistants"] document_type: "architecture" category: "architecture" c4_level: "context" diagram_type: "system_context" related_diagrams: ["container-architecture.md"] external_tools: ["draw.io"] tags: ["c4", "system-context", "boundaries", "actors"] --- # System Context: AI Coding Template **Purpose**: Shows how the AI Coding Template system fits into the broader development ecosystem and interacts with users and external systems. ## System Overview The **AI Coding Template** is a comprehensive platform that transforms individual AI assistants into specialized expert teams with persistent context and consistent patterns. It solves the core problems of AI-assisted development: context limitations, inconsistent quality, and lack of specialized expertise. ### Core Value Propositions 1. **Context Preservation**: Maintains project knowledge across AI sessions through structured documentation and state management 2. **Specialized Expertise**: Provides 17 domain-specific AI agents for every aspect of development 3. **Quality Consistency**: Enforces standards and patterns automatically through templates and validation 4. **Team Coordination**: Enables effective collaboration between humans and AI agents ## System Boundary **In Scope**: - AI agent orchestration and coordination - Project context and state management - Documentation standardization and templates - Work organization and progress tracking - Automation tools and quality gates **Out of Scope**: - Actual AI model training or deployment - Code compilation or runtime execution - External system integrations (these are supported, not replaced) - Project management system implementation ## External Actors ### Primary Users #### Solo Developers - **Role**: Individual developers working on personal or small projects - **Goals**: - Leverage AI assistance effectively for complex development tasks - Maintain consistent quality and patterns in their codebase - Preserve context and decisions across development sessions - **Interactions**: - Configure template for their specific project needs - Use specialized agents for different development tasks - Reference documentation and patterns for consistency - **Value Received**: Enhanced productivity through specialized AI assistance and maintained context #### Development Teams - **Role**: Teams of 2-20 developers working on shared codebases - **Goals**: - Coordinate AI-assisted development across team members - Maintain consistent patterns and quality standards - Share context and decisions across the team - Scale AI assistance across multiple domains (frontend, backend, DevOps) - **Interactions**: - Set up shared templates and standards - Use agent coordination for complex multi-domain features - Maintain shared documentation and context - Coordinate work through structured deliverables - **Value Received**: Team-wide consistency and coordination of AI assistance #### Technical Writers - **Role**: Documentation specialists and content creators - **Goals**: - Create comprehensive, maintainable documentation - Ensure documentation stays current with code changes - Follow consistent documentation standards - **Interactions**: - Use documentation templates and guidelines - Leverage technical-writer for maintaining currency - Create new documentation using technical-writer agent - **Value Received**: Automated documentation maintenance and consistency ### AI Assistant Platforms #### Claude (Primary) - **Role**: Core AI assistant platform providing specialized agent capabilities - **Capabilities**: - Model variety (Haiku, Sonnet, Opus) for different complexity levels - Tool use and multi-step reasoning - Code analysis and generation - **Interactions**: - Receives structured context and agent specifications - Executes specialized tasks based on agent definitions - Returns structured outputs following template patterns - **Data Exchange**: Project context, agent instructions, code and documentation #### Other AI Platforms - **Examples**: Cursor, GitHub Copilot, ChatGPT with code capabilities - **Role**: Alternative or complementary AI assistance platforms - **Interactions**: - Can use template structure and documentation patterns - May leverage context management for consistency - Follow established quality standards and conventions ## External Systems ### Development Infrastructure #### Git Repositories - **Purpose**: Version control and code collaboration - **Systems**: GitHub, GitLab, Bitbucket, local Git repositories - **Interactions**: - Template integrates with Git workflow and branching strategies - Agent work follows Git conventions for commits and branches - Context preservation works across Git operations - **Data Exchange**: Code changes, commit messages, branch operations, project history #### Integrated Development Environments (IDEs) - **Purpose**: Primary development environment and tool integration - **Systems**: VS Code, JetBrains IDEs, Vim/Neovim, Cursor - **Interactions**: - Template works within IDE environments - Agent specifications can be IDE-agnostic - Documentation and templates accessible from IDE - **Data Exchange**: File operations, project structure, development context #### CI/CD Pipelines - **Purpose**: Automated testing, building, and deployment - **Systems**: GitHub Actions, GitLab CI, Jenkins, CircleCI - **Interactions**: - Quality standards integrate with CI/CD checks - Automation scripts support pipeline integration - Documentation validation can be automated - **Data Exchange**: Build status, test results, deployment information ### Project Management #### Issue Tracking Systems - **Purpose**: Work planning, tracking, and coordination - **Systems**: Jira, Linear, GitHub Issues, Azure DevOps - **Interactions**: - Deliverables structure maps to issue tracking workflows - Agent work can reference and update issues - Context includes issue tracking integration - **Data Exchange**: Issue status, work assignments, progress tracking #### Documentation Platforms - **Purpose**: Team knowledge sharing and documentation hosting - **Systems**: Confluence, Notion, GitBook, internal wikis - **Interactions**: - Template documentation can complement existing systems - Structured documentation patterns can be exported - Context management helps maintain consistency across platforms - **Data Exchange**: Documentation content, formatting standards, integration patterns ### External Services #### Package Registries - **Purpose**: Dependency management and library distribution - **Systems**: npm, PyPI, Maven Central, Docker Hub - **Interactions**: - Quality standards include dependency management - Automation tools support package operations - Documentation includes dependency documentation - **Data Exchange**: Package information, dependency updates, security advisories #### Cloud Platforms - **Purpose**: Infrastructure hosting and managed services - **Systems**: AWS, Google Cloud, Azure, Vercel, Netlify - **Interactions**: - DevOps agents support cloud platform integration - Deployment patterns include cloud-specific considerations - Infrastructure documentation follows template patterns - **Data Exchange**: Deployment configurations, infrastructure status, service integrations ## Key System Interactions ### User-to-System Workflows #### Project Initialization 1. **User** selects appropriate template configuration 2. **AI Coding Template** provides project structure and initial context 3. **User** customizes templates and agent configurations 4. **External Systems** (Git, IDE) are configured with template patterns #### Feature Development 1. **User** creates deliverable and issue structure using templates 2. **AI Agents** (coordinated by template) implement features following patterns 3. **Quality Systems** validate implementation against standards 4. **External Systems** (Git, CI/CD) process and deploy changes #### Context Restoration 1. **User** starts new development session 2. **AI Coding Template** provides current project state via STATUS.md 3. **AI Agents** restore context and continue work consistently 4. **External Systems** maintain integration and workflow continuity ### System-to-System Integrations #### Git Integration Pattern ``` Template Workflow → Git Operations → External Review → Template Update - Branch strategies align with agent coordination - Commit messages follow template standards - Context preservation works across Git operations ``` #### Project Management Integration ``` Template Deliverables ↔ Issue Tracking ↔ Progress Updates → Template Context - Deliverable structure maps to external issue organization - Agent work updates external tracking systems - External progress feeds back to template context ``` #### CI/CD Integration Pattern ``` Template Quality Gates → CI/CD Validation → Deployment → Template Updates - Quality standards enforced in CI/CD pipelines - Automation scripts integrate with build systems - Deployment results update template context ``` ## Data Flows ### Inbound Data - **User Requirements**: Project needs, feature specifications, quality standards - **External Context**: Git history, issue status, deployment states, dependency updates - **AI Feedback**: Agent execution results, quality assessments, optimization suggestions ### Outbound Data - **Structured Context**: Project state, agent instructions, quality requirements - **Development Artifacts**: Code, documentation, configuration, tests - **Integration Data**: Git operations, issue updates, deployment configurations ### Persistent Data - **Project Memory**: STATUS.md, context files, historical decisions - **Standards and Patterns**: Templates, quality gates, agent specifications - **Work Organization**: Deliverable structures, issue hierarchies, progress tracking ## System Context Diagram ``` ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ Solo │ │ Development │ │ Technical │ │ Developers │ │ Teams │ │ Writers │ └─────────┬───────┘ └─────────┬───────┘ └─────────┬───────┘ │ │ │ │ Configure & Use │ Coordinate & Share │ Document & Maintain │ │ │ └──────────────────────┼──────────────────────┘ │ ┌─────────────────────────────▼─────────────────────────────┐ │ │ │ AI Coding Template Platform │ │ │ │ • 17 Specialized AI Agents │ │ • Context Management System │ │ • Documentation Framework │ │ • Work Organization System │ │ • Quality Assurance & Automation │ │ │ └─────────────┬─────────────┬─────────────┬─────────────────┘ │ │ │ Orchestrate│ Preserve │ Integrate│ │ Context │ │ ▼ ▼ ▼ ┌─────────────────┐ ┌─────────────┐ ┌─────────────────┐ │ AI Assistant │ │ Git │ │ Project │ │ Platforms │ │ Repositories│ │ Management │ │ │ │ │ │ Systems │ │ • Claude │ │ • GitHub │ │ • Jira/Linear │ │ • Cursor │ │ • GitLab │ │ • GitHub Issues │ │ • Others │ │ • Bitbucket │ │ • Azure DevOps │ └─────────────────┘ └─────────────┘ └─────────────────┘ │ Support │ Integrate ▼ ┌─────────────────────────────────────┐ │ Development Ecosystem │ │ │ │ • IDEs (VS Code, JetBrains) │ │ • CI/CD (GitHub Actions, GitLab) │ │ • Package Registries (npm, PyPI) │ │ • Cloud Platforms (AWS, GCP) │ │ • Documentation (Confluence) │ └─────────────────────────────────────┘ ``` ## Benefits and Outcomes ### For Users - **Reduced Context Loss**: AI assistance maintains consistency across sessions - **Specialized Expertise**: Access to domain-specific knowledge for every development task - **Quality Consistency**: Automated enforcement of standards and patterns - **Team Coordination**: Effective collaboration between human and AI team members ### For Organizations - **Accelerated Development**: Faster feature delivery through specialized AI assistance - **Maintained Quality**: Consistent standards across teams and projects - **Knowledge Preservation**: Project context and decisions persist beyond individual contributors - **Scalable AI Adoption**: Framework for expanding AI assistance across organization ### For AI Platforms - **Enhanced Effectiveness**: Structured context improves AI decision-making quality - **Specialized Usage**: Domain-specific agents optimize AI capabilities - **Consistent Patterns**: Template structure improves output consistency - **Measurable Impact**: Clear metrics for AI assistance effectiveness ## Success Metrics ### User Adoption - Time to productive AI assistance: <30 minutes for new projects - Context restoration effectiveness: >90% accurate context recovery - User satisfaction with specialized agents: >8.5/10 rating ### System Integration - External system compatibility: Works with 95%+ of common development tools - Documentation consistency: >90% adherence to template standards - Quality improvement: 50%+ reduction in inconsistency issues ### AI Effectiveness - Agent task success rate: >95% successful task completion - Context utilization: >80% of relevant context used in agent decisions - Quality output: >90% of AI-generated content meets quality standards --- *This system context establishes the foundation for understanding how the AI Coding Template integrates into the broader development ecosystem while providing specialized AI assistance and context management.*