UNPKG

agentic-qe

Version:

Agentic Quality Engineering Fleet System - AI-driven quality management platform

154 lines 8.25 kB
#!/usr/bin/env node "use strict"; var __importDefault = (this && this.__importDefault) || function (mod) { return (mod && mod.__esModule) ? mod : { "default": mod }; }; Object.defineProperty(exports, "__esModule", { value: true }); const commander_1 = require("commander"); const chalk_1 = __importDefault(require("chalk")); const init_1 = require("./commands/init"); const generate_1 = require("./commands/generate"); const run_1 = require("./commands/run"); const analyze_1 = require("./commands/analyze"); const fleet_1 = require("./commands/fleet"); const program = new commander_1.Command(); // CLI Header console.log(chalk_1.default.blue.bold(` ┌─────────────────────────────────────────────────────────────┐ │ Agentic QE Fleet │ │ AI-Driven Quality Engineering Platform │ │ Version 1.0.0 │ └─────────────────────────────────────────────────────────────┘ `)); // Configure CLI program .name('agentic-qe') .description('Agentic Quality Engineering Fleet System - AI-driven quality management platform') .version('1.0.0', '-v, --version', 'display version number') .helpOption('-h, --help', 'display help for command'); // Register commands // Fleet Management Commands program .command('init') .description('Initialize new QE fleet with specified topology') .option('-t, --topology <type>', 'Fleet topology: hierarchical, mesh, ring, adaptive', 'hierarchical') .option('-a, --max-agents <number>', 'Maximum number of agents (5-50)', '20') .option('-f, --focus <areas>', 'Testing focus areas (comma-separated)', 'unit,integration,e2e') .option('-e, --environments <envs>', 'Target environments (comma-separated)', 'development,staging') .option('-c, --config <path>', 'Configuration file path') .option('--frameworks <frameworks>', 'Testing frameworks (comma-separated)', 'jest,mocha,pytest') .action(init_1.InitCommand.execute); // Test Generation Commands program .command('generate') .description('Generate comprehensive test suites using AI analysis') .argument('[target]', 'Target type: tests, integration, performance, security', 'tests') .option('-t, --type <type>', 'Test type: unit, integration, e2e, performance, security', 'unit') .option('-c, --coverage-target <number>', 'Target coverage percentage', '85') .option('-p, --path <path>', 'Source code path to analyze', './src') .option('-o, --output <path>', 'Output directory for generated tests', './tests') .option('-f, --framework <framework>', 'Testing framework', 'jest') .option('--from-swagger <path>', 'Generate from OpenAPI/Swagger specification') .option('--property-based', 'Generate property-based tests') .option('--mutation-testing', 'Include mutation testing scenarios') .action(generate_1.GenerateCommand.execute); // Test Execution Commands program .command('run') .description('Execute test suites with parallel orchestration') .argument('[target]', 'Target: tests, suite, regression, performance', 'tests') .option('-p, --parallel', 'Enable parallel execution', false) .option('-e, --env <environment>', 'Target environment', 'development') .option('-s, --suite <name>', 'Specific test suite name') .option('-t, --timeout <seconds>', 'Test timeout in seconds', '300') .option('-r, --retry-flaky <count>', 'Retry count for flaky tests', '3') .option('-c, --concurrency <number>', 'Concurrent test processes', '4') .option('--reporter <type>', 'Test reporter: json, junit, html', 'json') .option('--coverage', 'Generate coverage report', false) .action(run_1.RunCommand.execute); // Analysis Commands program .command('analyze') .description('Analyze test results and quality metrics') .argument('[target]', 'Analysis target: coverage, quality, trends, gaps', 'coverage') .option('--gaps', 'Identify coverage gaps', false) .option('--recommendations', 'Generate improvement recommendations', false) .option('--metrics', 'Include detailed quality metrics', false) .option('--trends', 'Show quality trends over time', false) .option('-p, --period <timeframe>', 'Analysis time period', '30d') .option('-f, --format <type>', 'Output format: json, html, csv', 'json') .option('--threshold <number>', 'Quality threshold for alerts', '80') .action(analyze_1.AnalyzeCommand.execute); // Fleet Status and Management program .command('fleet') .description('Manage and monitor fleet operations') .argument('[action]', 'Fleet action: status, scale, deploy, destroy', 'status') .option('-v, --verbose', 'Verbose output', false) .option('-a, --agents <number>', 'Target agent count for scaling') .option('-e, --env <environment>', 'Environment for deployment', 'development') .option('-i, --interval <seconds>', 'Monitoring interval', '5') .option('--topology <type>', 'Fleet topology for scaling') .option('--health-check', 'Run comprehensive health check', false) .action(fleet_1.FleetCommand.execute); // Advanced Intelligence Commands program .command('predict') .description('Predict quality issues using AI models') .option('-m, --model <type>', 'Prediction model: neural, statistical, ensemble', 'neural') .option('-c, --confidence <threshold>', 'Confidence threshold (0-1)', '0.8') .option('-s, --scope <area>', 'Prediction scope: code, tests, deployment', 'code') .option('-h, --history <period>', 'Historical data period', '30d') .action(async (options) => { console.log(chalk_1.default.yellow('🔮 Quality Prediction Analysis')); console.log(chalk_1.default.gray(`Model: ${options.model}, Confidence: ${options.confidence}`)); console.log(chalk_1.default.blue('⚠️ Feature available in future release')); }); program .command('optimize') .description('Optimize test suites using mathematical algorithms') .option('-a, --algorithm <type>', 'Optimization algorithm: sublinear, genetic, greedy', 'sublinear') .option('-t, --target-time <duration>', 'Target execution time', '5m') .option('-c, --coverage-min <percentage>', 'Minimum coverage to maintain', '80') .action(async (options) => { console.log(chalk_1.default.yellow('⚡ Test Suite Optimization')); console.log(chalk_1.default.gray(`Algorithm: ${options.algorithm}, Target: ${options.targetTime}`)); console.log(chalk_1.default.blue('⚠️ Feature available in future release')); }); program .command('learn') .description('Learn patterns from historical data') .option('-h, --from-history <period>', 'Historical data period', '30d') .option('-p, --patterns <types>', 'Pattern types: defects, performance, flaky', 'defects') .action(async (options) => { console.log(chalk_1.default.yellow('🧠 Pattern Learning')); console.log(chalk_1.default.gray(`Period: ${options.fromHistory}, Patterns: ${options.patterns}`)); console.log(chalk_1.default.blue('⚠️ Feature available in future release')); }); // Error handling program.exitOverride(); try { program.parse(); } catch (err) { if (err.code === 'commander.help') { process.exit(0); } else if (err.code === 'commander.version') { process.exit(0); } else { console.error(chalk_1.default.red('❌ CLI Error:'), err.message); process.exit(1); } } // If no command provided, show help if (!process.argv.slice(2).length) { program.outputHelp(); console.log(chalk_1.default.yellow('\n💡 Quick Start:')); console.log(chalk_1.default.gray(' agentic-qe init --topology hierarchical')); console.log(chalk_1.default.gray(' agentic-qe generate tests --coverage-target 85')); console.log(chalk_1.default.gray(' agentic-qe run tests --parallel')); console.log(chalk_1.default.gray(' agentic-qe fleet status --verbose')); } //# sourceMappingURL=index-spec.js.map