UNPKG

agentic-qe

Version:

Agentic Quality Engineering Fleet System - AI-driven quality management platform

856 lines (852 loc) 35.4 kB
"use strict"; /** * ProductionIntelligenceAgent - Converts production data into test scenarios * * Implements incident replay testing, RUM analysis, anomaly detection, * load pattern analysis, and feature usage analytics to close the * production-to-testing feedback loop. * * Based on SPARC methodology and AQE Fleet specification */ Object.defineProperty(exports, "__esModule", { value: true }); exports.ProductionIntelligenceAgent = void 0; const BaseAgent_1 = require("./BaseAgent"); const types_1 = require("../types"); // ============================================================================ // Production Intelligence Agent Implementation // ============================================================================ class ProductionIntelligenceAgent extends BaseAgent_1.BaseAgent { constructor(config) { super({ ...config, type: types_1.QEAgentType.PRODUCTION_INTELLIGENCE, capabilities: [ { name: 'incident-replay', version: '1.0.0', description: 'Convert production incidents into reproducible test scenarios', parameters: { minOccurrences: config.thresholds?.minIncidentOccurrences || 5, severityFilter: ['HIGH', 'CRITICAL'] } }, { name: 'rum-analysis', version: '1.0.0', description: 'Analyze Real User Monitoring data to generate realistic test scenarios', parameters: { deviceTypes: ['mobile', 'desktop', 'tablet'], browserSupport: ['chrome', 'safari', 'firefox', 'edge'] } }, { name: 'anomaly-detection', version: '1.0.0', description: 'Detect abnormal patterns indicating potential bugs', parameters: { stdDevThreshold: config.thresholds?.anomalyStdDev || 3, detectionWindow: 300000 // 5 minutes } }, { name: 'load-pattern-analysis', version: '1.0.0', description: 'Extract realistic load patterns from production traffic', parameters: { analysisWindow: '30d', includeSeasonality: true } }, { name: 'feature-usage-analytics', version: '1.0.0', description: 'Track feature usage to prioritize testing efforts', parameters: { usageThreshold: 0.05, // 5% minimum usage deadCodeWindow: 90 // days } } ] }); this.baselineMetrics = new Map(); this.monitoringClients = new Map(); this.config = { ...config, thresholds: { anomalyStdDev: 3, errorRateSpike: 0.5, latencyDegradation: 0.3, minIncidentOccurrences: 5, ...config.thresholds }, features: { incidentReplay: true, rumAnalysis: true, anomalyDetection: true, loadPatternAnalysis: true, featureUsageAnalytics: true, ...config.features } }; } // ============================================================================ // BaseAgent Implementation // ============================================================================ async initializeComponents() { console.log(`ProductionIntelligenceAgent ${this.agentId.id} initializing...`); // Initialize monitoring platform clients await this.initializeMonitoringClients(); // Load historical baseline metrics await this.loadBaselineMetrics(); // Register event handlers for production events this.registerProductionEventHandlers(); console.log(`ProductionIntelligenceAgent ${this.agentId.id} initialized successfully`); } async performTask(task) { const { type, payload } = task; console.log(`ProductionIntelligenceAgent executing ${type} task: ${task.id}`); switch (type) { case 'incident-replay': return await this.performIncidentReplay(payload); case 'rum-analysis': return await this.performRUMAnalysis(payload); case 'anomaly-detection': return await this.performAnomalyDetection(payload); case 'load-pattern-analysis': return await this.performLoadPatternAnalysis(payload); case 'feature-usage-analytics': return await this.performFeatureUsageAnalytics(payload); case 'generate-tests-from-incidents': return await this.generateTestsFromIncidents(payload); case 'generate-tests-from-rum': return await this.generateTestsFromRUM(payload); case 'analyze-production-vs-staging': return await this.analyzeProductionVsStaging(payload); default: throw new Error(`Unsupported task type: ${type}`); } } async loadKnowledge() { // Load production intelligence patterns and insights const storedPatterns = await this.retrieveMemory('production-patterns'); if (storedPatterns) { console.log('Loaded production intelligence patterns from memory'); } // Load incident history const incidentHistory = await this.memoryStore.retrieve('aqe/production/incidents'); if (incidentHistory) { console.log('Loaded incident history from memory'); } // Load RUM data const rumData = await this.memoryStore.retrieve('aqe/production/rum-data'); if (rumData) { console.log('Loaded RUM data from memory'); } } async cleanup() { // Save current state await this.storeMemory('production-state', { baselineMetrics: Array.from(this.baselineMetrics.entries()), timestamp: new Date() }); // Close monitoring client connections for (const [platform, client] of this.monitoringClients.entries()) { console.log(`Closing connection to ${platform}`); // In real implementation, properly close connections } this.monitoringClients.clear(); console.log(`ProductionIntelligenceAgent ${this.agentId.id} cleaned up`); } // ============================================================================ // Incident Replay Testing // ============================================================================ async performIncidentReplay(data) { const { incident } = data; console.log(`Analyzing incident ${incident.id} for replay testing`); // Generate test scenario from incident const testScenario = await this.generateIncidentTestScenario(incident); // Store incident analysis await this.memoryStore.store(`aqe/incidents/${incident.id}`, { incident, testScenario, analyzedAt: new Date(), severity: incident.severity }); // Emit event for test generation this.emitEvent('production.incident.analyzed', { incidentId: incident.id, testScenarioId: testScenario.id, severity: incident.severity }, incident.severity === 'CRITICAL' ? 'critical' : 'high'); return { testScenario, reproducible: true, testSuite: { id: `incident-replay-${incident.id}`, name: `Incident Replay: ${incident.id} - ${incident.error}`, tests: [testScenario], metadata: { generatedAt: new Date(), coverageTarget: 0, framework: 'jest', estimatedDuration: incident.context.requestTrace?.duration || 5000, generationStrategy: 'incident-replay' } } }; } async generateIncidentTestScenario(incident) { return { id: `test-incident-${incident.id}`, name: `should handle ${incident.error} gracefully`, type: types_1.TestType.INTEGRATION, parameters: [ { name: 'incident', value: incident, type: 'ProductionIncident' }, { name: 'systemState', value: incident.context.systemState, type: 'SystemState' }, { name: 'expectedBehavior', value: 'graceful-degradation', type: 'string' } ], assertions: [ `expect(response.status).not.toBe(500)`, `expect(response.error).toBeDefined()`, `expect(response.retryable).toBe(true)`, `expect(orderData).not.toBeNull()`, `expect(circuitBreaker.state).toBe('OPEN') // after threshold` ], expectedResult: { status: 'failed-gracefully', userNotified: true, dataIntegrity: true }, estimatedDuration: incident.context.requestTrace?.duration || 5000 }; } // ============================================================================ // RUM Analysis // ============================================================================ async performRUMAnalysis(data) { const { rumData, timeWindow = 'last_7_days' } = data; console.log(`Analyzing RUM data for ${timeWindow}`); // Fetch RUM data from monitoring platform or use provided data const analysisData = rumData || await this.fetchRUMData(timeWindow); // Analyze user journeys const userJourneys = this.analyzeUserJourneys(analysisData); // Identify error patterns const errorPatterns = this.identifyErrorPatterns(analysisData); // Generate performance insights const performanceInsights = this.generatePerformanceInsights(analysisData); // Generate tests from RUM data const generatedTests = await this.generateTestsFromRUMData(analysisData); // Store RUM analysis await this.memoryStore.store('aqe/rum-data/latest', { analysisData, userJourneys, errorPatterns, performanceInsights, analyzedAt: new Date() }); // Emit event this.emitEvent('production.rum.analyzed', { journeys: userJourneys.length, errors: errorPatterns.length, tests: generatedTests.length }, 'medium'); return { userJourneys, errorPatterns, performanceInsights, generatedTests }; } analyzeUserJourneys(rumData) { // Sort journeys by frequency return rumData.userJourneys .sort((a, b) => b.frequency - a.frequency) .slice(0, 10); // Top 10 most common journeys } identifyErrorPatterns(rumData) { // Filter high-impact errors return rumData.errorPatterns .filter(pattern => pattern.userImpact === 'HIGH' || pattern.frequency > 100) .sort((a, b) => b.frequency - a.frequency); } generatePerformanceInsights(rumData) { const { performanceMetrics } = rumData; return { fcp: { status: performanceMetrics.FCP.p95 < 2500 ? 'GOOD' : 'NEEDS_IMPROVEMENT', p95: performanceMetrics.FCP.p95, threshold: 2500 }, lcp: { status: performanceMetrics.LCP.p95 < 4000 ? 'GOOD' : 'NEEDS_IMPROVEMENT', p95: performanceMetrics.LCP.p95, threshold: 4000 }, fid: { status: performanceMetrics.FID.p95 < 100 ? 'GOOD' : 'NEEDS_IMPROVEMENT', p95: performanceMetrics.FID.p95, threshold: 100 }, cls: { status: performanceMetrics.CLS.p95 < 0.1 ? 'GOOD' : 'NEEDS_IMPROVEMENT', p95: performanceMetrics.CLS.p95, threshold: 0.1 } }; } async generateTestsFromRUMData(rumData) { const tests = []; // Generate tests for common user journeys for (const journey of rumData.userJourneys.slice(0, 5)) { tests.push({ id: `rum-journey-${journey.pattern.replace(/\s+/g, '-').toLowerCase()}`, name: `should complete user journey: ${journey.pattern}`, type: types_1.TestType.E2E, parameters: [ { name: 'journey', value: journey, type: 'UserJourney' } ], assertions: [ `expect(journey.completed).toBe(true)`, `expect(journey.conversionRate).toBeGreaterThanOrEqual(${journey.conversionRate})` ], expectedResult: { completed: true, duration: journey.avgDuration }, estimatedDuration: journey.avgDuration }); } // Generate tests for error patterns for (const error of rumData.errorPatterns.slice(0, 3)) { tests.push({ id: `rum-error-${error.error.replace(/\W+/g, '-').toLowerCase()}`, name: `should handle error: ${error.error}`, type: types_1.TestType.INTEGRATION, parameters: [ { name: 'errorPattern', value: error, type: 'ErrorPattern' } ], assertions: [ `expect(() => triggerError()).not.toThrow()`, `expect(errorHandled).toBe(true)` ], expectedResult: { errorHandled: true }, estimatedDuration: 2000 }); } return tests; } // ============================================================================ // Anomaly Detection // ============================================================================ async performAnomalyDetection(data) { const { currentMetrics, lookbackPeriod = '24h' } = data; console.log(`Detecting anomalies in production metrics (lookback: ${lookbackPeriod})`); const anomalies = []; const recommendations = []; // Error rate spike detection const errorRateAnomaly = this.detectErrorRateSpike(currentMetrics); if (errorRateAnomaly) { anomalies.push(errorRateAnomaly); recommendations.push('Generate regression tests for recent changes'); } // Latency degradation detection const latencyAnomaly = this.detectLatencyDegradation(currentMetrics); if (latencyAnomaly) { anomalies.push(latencyAnomaly); recommendations.push('Generate performance tests targeting affected endpoints'); } // User behavior anomaly detection const behaviorAnomaly = this.detectBehaviorAnomaly(currentMetrics); if (behaviorAnomaly) { anomalies.push(behaviorAnomaly); recommendations.push('Generate UI tests for affected user flows'); } // Store anomalies await this.memoryStore.store('aqe/anomalies/latest', { anomalies, recommendations, detectedAt: new Date(), metrics: currentMetrics }); // Emit high-priority event if critical anomalies found const criticalAnomalies = anomalies.filter(a => a.severity === 'CRITICAL'); if (criticalAnomalies.length > 0) { this.emitEvent('production.anomaly.critical', { count: criticalAnomalies.length, anomalies: criticalAnomalies }, 'critical'); } return { anomalies, recommendations }; } detectErrorRateSpike(currentMetrics) { const baseline = this.baselineMetrics.get('errorRate') || { mean: 0.005, stdDev: 0.002 }; const current = currentMetrics.errorRate || 0; const zScore = (current - baseline.mean) / baseline.stdDev; if (Math.abs(zScore) > this.config.thresholds.anomalyStdDev) { return { type: 'ERROR_RATE_SPIKE', severity: zScore > 5 ? 'CRITICAL' : zScore > 3 ? 'HIGH' : 'MEDIUM', details: { current, baseline: baseline.mean, deviation: zScore, magnitude: (current - baseline.mean) / baseline.mean, confidence: this.calculateConfidence(zScore) }, affectedUsers: Math.floor(currentMetrics.activeUsers * current), recommendation: 'Generate regression tests for recent changes' }; } return null; } detectLatencyDegradation(currentMetrics) { const baseline = this.baselineMetrics.get('latency') || { p95: 250, mean: 180 }; const current = currentMetrics.latency?.p95 || 0; const degradation = (current - baseline.p95) / baseline.p95; if (degradation > this.config.thresholds.latencyDegradation) { return { type: 'LATENCY_DEGRADATION', severity: degradation > 1.0 ? 'CRITICAL' : degradation > 0.5 ? 'HIGH' : 'MEDIUM', details: { current, baseline: baseline.p95, deviation: degradation, magnitude: degradation, confidence: 0.9 }, affectedEndpoints: currentMetrics.endpoints || [], recommendation: 'Generate performance tests targeting affected endpoints' }; } return null; } detectBehaviorAnomaly(currentMetrics) { const baseline = this.baselineMetrics.get('userBehavior') || { conversionRate: 0.75 }; const current = currentMetrics.conversionRate || 0; const drop = (baseline.conversionRate - current) / baseline.conversionRate; if (drop > 0.2) { // 20% drop in conversion return { type: 'USER_BEHAVIOR_ANOMALY', severity: drop > 0.5 ? 'CRITICAL' : 'HIGH', details: { current, baseline: baseline.conversionRate, deviation: drop, magnitude: drop, confidence: 0.85 }, hypothesis: 'UI bug or broken functionality', recommendation: 'Generate UI tests for affected user flows' }; } return null; } calculateConfidence(zScore) { // Convert z-score to confidence level (0-1) const absZ = Math.abs(zScore); if (absZ > 3) return 0.999; if (absZ > 2) return 0.95; if (absZ > 1) return 0.68; return 0.5; } // ============================================================================ // Load Pattern Analysis // ============================================================================ async performLoadPatternAnalysis(data) { const { timeWindow = '30d' } = data; console.log(`Analyzing load patterns for ${timeWindow}`); // Fetch production traffic data const loadPattern = await this.extractLoadPattern(timeWindow); // Generate load test script const loadTestScript = this.generateLoadTestScript(loadPattern); // Generate recommendations const recommendations = this.generateLoadTestRecommendations(loadPattern); // Store load pattern await this.memoryStore.store('aqe/load-patterns/latest', { loadPattern, analyzedAt: new Date(), timeWindow }); return { loadPattern, loadTestScript, recommendations }; } async extractLoadPattern(timeWindow) { // Simulate load pattern extraction // In real implementation, fetch from monitoring platform return { dailyPattern: { hourly: Array.from({ length: 24 }, (_, hour) => ({ hour, rps: hour >= 9 && hour <= 17 ? 2000 + Math.random() * 1000 : 500 + Math.random() * 200 })), peakHours: [9, 12, 14, 15, 18], lowTrafficHours: [0, 1, 2, 3, 4] }, weeklyPattern: { monday: { rps: 2891, conversionRate: 0.78 }, tuesday: { rps: 3124, conversionRate: 0.81 }, wednesday: { rps: 3342, conversionRate: 0.83 }, thursday: { rps: 3198, conversionRate: 0.79 }, friday: { rps: 2734, conversionRate: 0.72 }, saturday: { rps: 1893, conversionRate: 0.65 }, sunday: { rps: 1678, conversionRate: 0.67 } }, endpointDistribution: { 'GET /api/products': 0.34, 'GET /api/search': 0.23, 'POST /api/cart': 0.15, 'POST /api/orders': 0.12, 'GET /api/users': 0.08, 'other': 0.08 }, userBehaviorPatterns: { browsers: { avgSessionDuration: 342000, avgPagesPerSession: 7.8 }, buyers: { avgSessionDuration: 523000, avgPagesPerSession: 12.3 } } }; } generateLoadTestScript(pattern) { // Generate k6 load test script return ` import { check, group, sleep } from 'k6'; import http from 'k6/http'; export let options = { stages: [ { duration: '5m', target: 2000 }, // Morning ramp-up { duration: '2h', target: 3500 }, // Peak hours { duration: '5m', target: 1800 }, // Evening traffic { duration: '5m', target: 500 } // Night baseline ], thresholds: { http_req_duration: ['p(95)<500'], http_req_failed: ['rate<0.01'], http_reqs: ['rate>2000'] } }; export default function() { // Implementation based on endpoint distribution const endpoints = ${JSON.stringify(pattern.endpointDistribution)}; // Select endpoint based on distribution const rand = Math.random(); let endpoint = '/api/products'; group('User Session', () => { let response = http.get(\`\${BASE_URL}\${endpoint}\`); check(response, { 'status 200': (r) => r.status === 200, 'response time < 500ms': (r) => r.timings.duration < 500 }); sleep(Math.random() * 3 + 1); }); } `.trim(); } generateLoadTestRecommendations(pattern) { const recommendations = []; // Analyze peak traffic const maxRps = Math.max(...pattern.dailyPattern.hourly.map(h => h.rps)); recommendations.push(`Test system capacity at ${maxRps * 1.5} RPS (150% of peak load)`); // Check conversion rates const avgConversion = Object.values(pattern.weeklyPattern).reduce((sum, day) => sum + day.conversionRate, 0) / 7; if (avgConversion < 0.75) { recommendations.push('Investigate low conversion rate - potential UX issues'); } recommendations.push('Implement gradual ramp-up to detect breaking points'); recommendations.push('Test during simulated peak hours to validate auto-scaling'); return recommendations; } // ============================================================================ // Feature Usage Analytics // ============================================================================ async performFeatureUsageAnalytics(data) { const { timeWindow = '30d' } = data; console.log(`Analyzing feature usage for ${timeWindow}`); // Fetch feature usage data const usageData = await this.fetchFeatureUsageData(timeWindow); // Analyze and prioritize features const features = this.analyzeFeaturePriority(usageData); // Identify unused features const unusedFeatures = this.identifyUnusedFeatures(usageData); // Store analytics await this.memoryStore.store('aqe/feature-usage/latest', { features, unusedFeatures, analyzedAt: new Date(), timeWindow }); return { features, unusedFeatures }; } async fetchFeatureUsageData(timeWindow) { // Simulate feature usage data // In real implementation, fetch from analytics platform return { totalUsers: 84392, features: [ { name: 'search_autocomplete', activeUsers: 75103, satisfaction: 0.92 }, { name: 'product_recommendations', activeUsers: 56503, clickthrough: 0.34 }, { name: 'saved_for_later', activeUsers: 19411, conversion: 0.12 }, { name: 'gift_wrapping', activeUsers: 2107, seasonal: true }, { name: 'legacy_wishlist_v1', activeUsers: 42, lastUsed: '2024-08-12' } ] }; } analyzeFeaturePriority(usageData) { return usageData.features.map((feature) => { const usagePercent = feature.activeUsers / usageData.totalUsers; let priority; let recommendation; if (usagePercent > 0.5) { priority = 'CRITICAL'; recommendation = 'Maintain high test coverage (>90%), add edge cases'; } else if (usagePercent > 0.25) { priority = 'HIGH'; recommendation = 'Increase coverage to 85%+'; } else if (usagePercent > 0.1) { priority = 'MEDIUM'; recommendation = 'Coverage acceptable for usage level'; } else if (usagePercent > 0.01) { priority = 'LOW'; recommendation = 'Minimal testing required'; } else { priority = 'DEPRECATED'; recommendation = 'Consider removal, migrate remaining users'; } return { name: feature.name, usage: usagePercent, priority, testCoverage: Math.floor(Math.random() * 30) + 60, // Simulated recommendation }; }); } identifyUnusedFeatures(usageData) { const unusedThreshold = usageData.totalUsers * 0.001; // 0.1% usage return usageData.features .filter((f) => f.activeUsers < unusedThreshold) .map((f) => ({ name: f.name, lastUsed: f.lastUsed || 'unknown', recommendation: 'Dead code, safe to remove' })); } // ============================================================================ // Test Generation from Production Data // ============================================================================ async generateTestsFromIncidents(data) { const { incidentIds, severityFilter = ['HIGH', 'CRITICAL'], limit = 10 } = data; // Fetch incidents from memory const incidents = await this.fetchIncidents(incidentIds, severityFilter, limit); const testSuites = []; let totalTests = 0; for (const incident of incidents) { const result = await this.performIncidentReplay({ incident }); if (result.testSuite) { testSuites.push(result.testSuite); totalTests += result.testSuite.tests.length; } } return { testSuites, totalTests }; } async generateTestsFromRUM(data) { const { timeWindow = '7d', minJourneyFrequency = 100 } = data; // Fetch RUM data const rumData = await this.fetchRUMData(timeWindow); // Filter journeys by frequency const relevantJourneys = rumData.userJourneys.filter(j => j.frequency >= minJourneyFrequency); const tests = await this.generateTestsFromRUMData(rumData); const testSuite = { id: `rum-generated-${Date.now()}`, name: 'RUM-Based User Journey Tests', tests, metadata: { generatedAt: new Date(), coverageTarget: 0, framework: 'playwright', estimatedDuration: tests.reduce((sum, t) => sum + (t.estimatedDuration || 0), 0), generationStrategy: 'rum-analysis' } }; return { testSuites: [testSuite], totalTests: tests.length }; } async analyzeProductionVsStaging(data) { const { metrics } = data; const differences = []; const recommendations = []; // Compare production vs staging metrics for (const metric of metrics) { const prodValue = await this.fetchProductionMetric(metric); const stagingValue = await this.fetchStagingMetric(metric); const delta = Math.abs(prodValue - stagingValue) / prodValue; if (delta > 0.1) { // >10% difference differences.push({ metric, production: prodValue, staging: stagingValue, delta, severity: delta > 0.5 ? 'HIGH' : 'MEDIUM' }); recommendations.push(`Staging environment does not match production for ${metric}`); } } return { differences, recommendations }; } // ============================================================================ // Helper Methods // ============================================================================ async initializeMonitoringClients() { const { monitoringPlatforms } = this.config; if (monitoringPlatforms?.datadog) { console.log('Initializing Datadog client'); // In real implementation: initialize Datadog API client this.monitoringClients.set('datadog', { initialized: true }); } if (monitoringPlatforms?.newRelic) { console.log('Initializing New Relic client'); // In real implementation: initialize New Relic API client this.monitoringClients.set('newrelic', { initialized: true }); } if (monitoringPlatforms?.grafana) { console.log('Initializing Grafana client'); // In real implementation: initialize Grafana API client this.monitoringClients.set('grafana', { initialized: true }); } } async loadBaselineMetrics() { // Load historical baselines from memory const storedBaselines = await this.retrieveMemory('baseline-metrics'); if (storedBaselines) { this.baselineMetrics = new Map(Object.entries(storedBaselines)); } else { // Initialize with defaults this.baselineMetrics.set('errorRate', { mean: 0.005, stdDev: 0.002 }); this.baselineMetrics.set('latency', { p95: 250, mean: 180 }); this.baselineMetrics.set('userBehavior', { conversionRate: 0.75 }); } } registerProductionEventHandlers() { // Listen for production incidents this.registerEventHandler({ eventType: 'production.incident', handler: async (event) => { await this.performIncidentReplay({ incident: event.data }); } }); // Listen for anomaly alerts this.registerEventHandler({ eventType: 'production.anomaly', handler: async (event) => { await this.performAnomalyDetection({ currentMetrics: event.data }); } }); } async fetchRUMData(timeWindow) { // Simulate fetching RUM data // In real implementation, fetch from monitoring platform return { timeWindow, totalSessions: 847392, totalPageViews: 3421847, userJourneys: [ { pattern: 'Homepage → Search → Product → Checkout → Payment', frequency: 234891, avgDuration: 342000, conversionRate: 0.78 }, { pattern: 'Homepage → Category → Product → Add to Cart', frequency: 189234, avgDuration: 178000, conversionRate: 0.34 } ], deviceDistribution: { mobile: 0.63, desktop: 0.32, tablet: 0.05 }, browserDistribution: { chrome: 0.54, safari: 0.31, firefox: 0.09, edge: 0.04 }, performanceMetrics: { FCP: { p50: 1234, p95: 3421, p99: 5678 }, LCP: { p50: 2341, p95: 4523, p99: 7891 }, FID: { p50: 87, p95: 234, p99: 456 }, CLS: { p50: 0.02, p95: 0.08, p99: 0.15 } }, errorPatterns: [], featureUsage: {} }; } async fetchIncidents(incidentIds, severityFilter, limit) { // Simulate fetching incidents from memory // In real implementation, query incident management system return [ { id: 'INC-2024-1234', timestamp: '2025-09-29T14:23:47.892Z', severity: 'CRITICAL', service: 'payment-service', error: 'PaymentProcessingException: Gateway timeout after 30s', affectedUsers: 1247, duration: 342000, region: 'us-east-1', context: { systemState: { cpu: 87.3, memory: 4.2, connections: 342, queueDepth: 1893, cacheHitRate: 23.1 } } } ]; } async fetchProductionMetric(metric) { // Simulate fetching production metric return Math.random() * 100; } async fetchStagingMetric(metric) { // Simulate fetching staging metric return Math.random() * 100; } } exports.ProductionIntelligenceAgent = ProductionIntelligenceAgent; //# sourceMappingURL=ProductionIntelligenceAgent.js.map