UNPKG

agentic-data-stack-community

Version:

AI Agentic Data Stack Framework - Community Edition. Open source data engineering framework with 4 core agents, essential templates, and 3-dimensional quality validation.

406 lines (315 loc) 11.3 kB
# Getting Started with ADSF Community Edition Welcome to the AI Agentic Data Stack Framework Community Edition! This guide will help you set up and start using the interactive agent system for your data engineering and analytics projects. ## 📋 Prerequisites ### System Requirements - **Node.js**: Version 14.0.0 or higher - **Operating System**: macOS, Linux, or Windows - **Memory**: Minimum 4GB RAM - **Storage**: At least 1GB free space ### Skills - Basic command line knowledge - Understanding of data concepts - Familiarity with SQL (helpful but not required) - Basic Python knowledge (for quality validation scripts) ## 🚀 Installation ### Method 1: NPM Global Installation (Recommended) ```bash # Install globally npm install -g agentic-data-stack-community # Verify installation agentic-data --version ``` ### Method 2: Local Project Installation ```bash # Create project directory mkdir my-data-project cd my-data-project # Install locally npm install agentic-data-stack-community # Use via npx npx agentic-data --help ``` ### Method 3: Clone Repository ```bash # Clone the repository git clone https://github.com/barnyp/agentic-data-stack-framework-community.git cd agentic-data-stack-framework-community # Install dependencies npm install # Run from source node tools/cli.js --help ``` ## 🎯 Your First Interactive Experience ### Step 1: Try the Complete Example (Recommended) ```bash # Navigate to the included example cd examples/simple-ecommerce-analytics # Generate realistic sample data python sample-data/generate-sample-data.py # Review what's included ls implementation/ cat README.md ``` ### Step 2: Use Interactive Shell Mode ```bash # List all available interactive agents agentic-data agents list # Enter interactive shell mode (recommended) agentic-data interactive # Activate the data analyst (Riley) @data-analyst # Interactive agent appears: # 📈 Riley activated # 📈 Riley: *help # 📈 Riley: *task # 📈 Riley: *analyze-data # 📈 Riley: *exit # Exit interactive shell exit ``` ### Step 3: Try Structured Workflows ```bash # Run a complete multi-agent workflow agentic-data workflow community-analytics-workflow # Follow the interactive prompts for each step: # 1. Requirements gathering (data-product-manager) # 2. Data profiling (data-analyst) # 3. Analysis execution (data-analyst) # 4. Quality validation (data-quality-engineer) ``` ### Step 4: Create Your Own Project ```bash # Initialize new project with patterns from example agentic-data init my-analytics-project cd my-analytics-project # Copy example patterns cp -r ../examples/simple-ecommerce-analytics/implementation . ``` ## 🤖 Working with Interactive AI Agents ### Data Engineer Agent (Emma ⚙️) Emma helps with pipeline development and infrastructure setup. ```bash # Activate Emma for interactive assistance agentic-data agent data-engineer # Available commands in Emma's session: # ⚙️ Emma: *build-pipeline # Build data pipelines # ⚙️ Emma: *setup-monitoring # Setup monitoring systems # ⚙️ Emma: *implement-quality-checks # Add quality validation # ⚙️ Emma: *profile-data # Analyze data characteristics # ⚙️ Emma: *help # Show all commands # ⚙️ Emma: *exit # Leave Emma's session ``` **Common Use Cases:** - Setting up data ingestion pipelines - Designing ETL processes - Infrastructure planning - Performance optimization - Deployment strategies ### Data Analyst Agent (Riley 📈) Riley specializes in business intelligence and customer analytics. ```bash # Enter interactive shell and activate Riley agentic-data interactive @data-analyst # Available commands in Riley's session: # 📈 Riley: *analyze-data # Perform comprehensive analysis # 📈 Riley: *segment-customers # Customer segmentation # 📈 Riley: *create-dashboard # Build interactive dashboards # 📈 Riley: *define-metrics # Define business metrics # 📈 Riley: *help # Show all commands # 📈 Riley: *exit # Leave Riley's session ``` **Common Use Cases:** - Customer segmentation analysis - RFM (Recency, Frequency, Monetary) analysis - Business intelligence dashboards - Data visualization design - Insight generation ### Data Product Manager Agent (Morgan 📊) Morgan handles project coordination and stakeholder management. ```bash # Enter interactive shell and activate Morgan agentic-data interactive @data-product-manager # Available commands in Morgan's session: # 📊 Morgan: *gather-requirements # Stakeholder requirements # 📊 Morgan: *create-data-contract # Create data contracts # 📊 Morgan: *define-metrics # Success metrics # 📊 Morgan: *help # Show all commands # 📊 Morgan: *exit # Leave Morgan's session ``` **Common Use Cases:** - Business requirements gathering - Project planning and coordination - Stakeholder communication - Value mapping and ROI planning - Data contract creation ### Data Quality Engineer Agent (Quinn 🔍) Quinn focuses on the 3-dimensional quality framework. ```bash # Activate Quinn for quality assurance agentic-data agent data-quality-engineer # Available commands in Quinn's session: # 🔍 Quinn: *validate-data-quality # Comprehensive quality validation # 🔍 Quinn: *profile-data # Statistical data profiling # 🔍 Quinn: *setup-quality-monitoring # Quality monitoring setup # 🔍 Quinn: *help # Show all commands # 🔍 Quinn: *exit # Leave Quinn's session ``` **Common Use Cases:** - Data completeness validation - Data accuracy verification - Consistency checking across systems - Quality monitoring setup - Issue investigation and resolution ## 📊 E-commerce Analytics Example The included e-commerce analytics example demonstrates real-world interactive agent usage: ### What's Included - **Customer Segmentation**: RFM analysis with interactive agent guidance - **Data Quality Validation**: 3-dimensional quality framework via Quinn - **Business Requirements**: Stakeholder templates via Alex - **Sample Data**: Realistic e-commerce dataset generation ### Running the Example with Agents ```bash # Navigate to the example cd examples/simple-ecommerce-analytics # Generate sample data python sample-data/generate-sample-data.py # Use interactive shell with agents agentic-data interactive # Gather requirements @data-product-manager *gather-requirements *exit # Perform analysis @data-analyst *analyze-data *segment-customers *exit # Validate quality @data-quality-engineer *implement-quality-checks *exit # Exit shell exit ``` ## 🔍 3-Dimensional Quality Framework ### Interactive Quality Validation with Quinn The community edition provides quality validation through the Data Quality Engineer agent. ```bash # Activate Quinn for interactive quality validation agentic-data agent data-quality-engineer # Available quality commands in Quinn's session: # 🔍 Quinn: *validate-data-quality # Full 3-dimensional validation # 🔍 Quinn: *profile-data # Data profiling and statistics # 🔍 Quinn: *setup-quality-monitoring # Quality monitoring setup ``` ### Quality Dimensions - **Completeness**: Data availability and coverage validation - **Accuracy**: Format checking and business rule validation - **Consistency**: Cross-reference validation and uniqueness checks ### Command Line Quality Checks ```bash # Run framework validation on project agentic-data validate # Validate specific example project agentic-data validate --path ./examples/simple-ecommerce-analytics ``` ## 📚 Templates Overview The community edition includes 20 essential templates accessible through agents. ### View Available Templates ```bash # List all community templates agentic-data templates list # Show specific template details agentic-data templates show data-contract-tmpl ``` ### Template Categories #### Data Engineering Templates - `data-pipeline-tmpl`: Core pipeline structure - `infrastructure-tmpl`: Infrastructure setup - `etl-patterns-tmpl`: ETL workflow patterns #### Analysis Templates - `data-analysis-tmpl`: Analysis workflow patterns - `customer-segmentation-tmpl`: Segmentation methodology - `dashboard-tmpl`: Dashboard design templates #### Quality Templates - `quality-checks-tmpl`: Quality validation framework - `data-profiling-tmpl`: Data exploration patterns - `quality-monitoring-tmpl`: Monitoring setup #### Business Templates - `business-requirements-tmpl`: Requirements documentation - `data-contract-tmpl`: Data contracts and specifications - `stakeholder-engagement-tmpl`: Communication planning ### Using Templates with Agents ```bash # Activate an agent and create documents agentic-data agent data-analyst *create-doc data-analysis-tmpl *exit ``` ## 🛠️ Configuration ### Project Configuration Create a `.adsf-config.yaml` file in your project root: ```yaml project: name: "My Analytics Project" version: "1.0.0" agents: ["data-engineer", "data-analyst"] quality: dimensions: ["completeness", "accuracy", "consistency"] thresholds: completeness: 0.95 accuracy: 0.98 consistency: 0.90 templates: default_format: "yaml" output_directory: "./generated" ``` ### Global Configuration Configure global settings: ```bash # Set default project template adsf-community config set default-template business-requirements-tmpl # Set quality thresholds adsf-community config set quality.completeness.threshold 0.95 # View current configuration adsf-community config list ``` ## 🚀 Next Steps 1. **Explore the Example**: Start with the e-commerce analytics example 2. **Try Different Agents**: Experiment with each of the 4 core agents 3. **Generate Templates**: Create templates for your specific use case 4. **Implement Quality Checks**: Set up 3-dimensional quality validation 5. **Build Your First Pipeline**: Create a complete data pipeline ## 🆘 Getting Help ### Command Line Help ```bash # General help adsf-community --help # Agent-specific help adsf-community agents --help # Template help adsf-community templates --help ``` ### Documentation - **User Guide**: `docs/user-guide.md` - **Core Concepts**: `docs/core-concepts.md` - **Examples**: `./examples/` - **API Reference**: `docs/api-reference.md` ### Community Support - **GitHub Issues**: Report bugs and request features - **Discussions**: Ask questions and share experiences - **Contributing**: See `CONTRIBUTING.md` for contribution guidelines ### Enterprise Features For advanced capabilities including 4 additional agents, 68 more templates, and 7-dimensional quality framework: - **Website**: https://www.agenticdatastack.com - **Email**: enterprise@agenticdatastack.com - **Migration Guide**: `docs/migration/enterprise-upgrade.md` ## 📈 Success Tips 1. **Start Small**: Begin with simple use cases and grow gradually 2. **Use Examples**: Learn from the included e-commerce example 3. **Focus on Quality**: Implement quality checks from the beginning 4. **Document Everything**: Use templates to maintain good documentation 5. **Engage Community**: Participate in discussions and share learnings Welcome to the ADSF Community! Happy data engineering! 🎉