agentic-data-stack-community
Version:
AI Agentic Data Stack Framework - Community Edition. Open source data engineering framework with 4 core agents, essential templates, and 3-dimensional quality validation.
329 lines (270 loc) β’ 12.6 kB
Markdown
# Core Concepts - ADSF Community Edition
This guide explains the fundamental concepts behind the AI Agentic Data Stack Framework Community Edition.
## π§ Interactive AI Agent Architecture
### What are Interactive AI Agents?
Interactive AI Agents in ADSF Community Edition are specialized digital assistants that provide expert guidance through interactive command sessions. Each agent embodies the knowledge and best practices of experienced professionals with persistent context management.
### Interactive Agent Capabilities
- **Role-Specific Expertise**: Each agent specializes in specific data tasks
- **Interactive Shell**: Persistent command sessions with `agentic-data interactive`
- **Agent Activation**: Quick agent switching with `@agent-name` commands
- **Command Resolution**: Intelligent matching of user requests to agent capabilities
- **Template Generation**: Interactive document creation with guided input
- **Task Orchestration**: Step-by-step execution with validation gates
- **Context Management**: Agents maintain project understanding across interactions
### The 4 Interactive Core Agents
#### π§ Data Engineer Agent (Emma βοΈ)
**Specialization**: Infrastructure and Pipeline Development
**Interactive Commands:**
```bash
agentic-data interactive
@data-engineer
# βοΈ Emma: *build-pipeline # Build data pipelines
# βοΈ Emma: *setup-monitoring # Setup monitoring systems
# βοΈ Emma: *implement-quality-checks # Add quality validation
# βοΈ Emma: *profile-data # Analyze data characteristics
```
**Key Responsibilities:**
- Data pipeline architecture and implementation
- ETL/ELT process design and optimization
- Infrastructure setup and monitoring
- Quality validation integration
- Performance optimization guidance
#### π Data Analyst Agent (Riley π)
**Specialization**: Business Intelligence and Analytics
**Interactive Commands:**
```bash
agentic-data interactive
@data-analyst
# π Riley: *analyze-data # Perform comprehensive analysis
# π Riley: *segment-customers # Customer segmentation
# π Riley: *create-dashboard # Build interactive dashboards
# π Riley: *define-metrics # Define business metrics
```
**Key Responsibilities:**
- Customer segmentation and RFM analysis
- Business intelligence development
- Data visualization and reporting
- Statistical analysis and insights
- KPI definition and tracking
#### π― Data Product Manager Agent (Morgan π)
**Specialization**: Project Management and Stakeholder Coordination
**Interactive Commands:**
```bash
agentic-data interactive
@data-product-manager
# π Morgan: *gather-requirements # Stakeholder requirements
# π Morgan: *create-data-contract # Create data contracts
# π Morgan: *define-metrics # Success metrics
# π Morgan: *map-business-value # Business value mapping
```
**Key Responsibilities:**
- Business requirements gathering
- Data contract creation and management
- Stakeholder communication and engagement
- Value mapping and ROI analysis
- Project coordination and planning
#### β
Data Quality Engineer Agent (Quinn π)
**Specialization**: Data Quality Assurance and Validation
**Interactive Commands:**
```bash
agentic-data interactive
@data-quality-engineer
# π Quinn: *validate-data-quality # Comprehensive quality validation
# π Quinn: *profile-data # Statistical data profiling
# π Quinn: *setup-quality-monitoring # Quality monitoring setup
```
**Key Responsibilities:**
- 3-dimensional quality framework implementation
- Data validation and statistical profiling
- Quality monitoring and alerting setup
- Issue detection and resolution guidance
- Quality metrics and reporting
## π Template System
### Template Philosophy
Templates in ADSF provide structured, reusable patterns for common data engineering tasks. They embody best practices and ensure consistency across projects.
### Template Categories
#### **Data Pipeline Templates**
- **Purpose**: Define data processing workflows
- **Examples**: ETL patterns, data ingestion workflows
- **Benefits**: Standardized pipeline structures, reduced development time
#### **Quality Templates**
- **Purpose**: Implement data quality validation
- **Examples**: Quality checks, profiling scripts, monitoring setup
- **Benefits**: Consistent quality standards, automated validation
#### **Business Templates**
- **Purpose**: Support project management and communication
- **Examples**: Requirements documentation, stakeholder engagement
- **Benefits**: Clear communication, structured planning
#### **Analysis Templates**
- **Purpose**: Standardize analytical approaches
- **Examples**: Customer segmentation, dashboard design
- **Benefits**: Reproducible analysis, consistent outputs
### Template Structure
```yaml
metadata:
template_id: "example-template"
name: "Example Template"
version: "1.0.0"
agent: "data-engineer"
category: "pipeline"
parameters:
source_system: "string"
target_system: "string"
transformation_rules: "list"
content:
# Template implementation
```
## π 3-Dimensional Quality Framework
### Quality Philosophy
The Community Edition focuses on three essential quality dimensions that provide maximum value for most data projects.
### Dimension 1: Completeness
**Definition**: Ensures all required data is present and accounts for missing values.
**Key Aspects:**
- **Record Completeness**: All expected records are present
- **Field Completeness**: Required fields contain values
- **Temporal Completeness**: All expected time periods covered
- **Source Completeness**: All data sources included
**Validation Methods:**
- Null value analysis
- Record count validation
- Gap detection
- Source system verification
**Metrics:**
- Completeness percentage
- Missing value rates
- Gap frequencies
- Source availability
### Dimension 2: Accuracy
**Definition**: Validates data correctness and format compliance.
**Key Aspects:**
- **Value Accuracy**: Data values are correct
- **Format Accuracy**: Data follows expected formats
- **Type Accuracy**: Data types are appropriate
- **Business Rule Accuracy**: Business logic correctly applied
**Validation Methods:**
- Range checking
- Format validation
- Type verification
- Business rule testing
- Manual sampling
**Metrics:**
- Error rates
- Format compliance rates
- Type validation success
- Business rule pass rates
### Dimension 3: Consistency
**Definition**: Ensures data alignment across systems and over time.
**Key Aspects:**
- **Cross-System Consistency**: Data alignment between systems
- **Temporal Consistency**: Data stability over time
- **Referential Consistency**: Relationship integrity
- **Standard Consistency**: Adherence to standards
**Validation Methods:**
- Cross-reference checking
- Relationship validation
- Standard compliance testing
- Change detection
- Duplicate identification
**Metrics:**
- Consistency scores
- Relationship integrity rates
- Standard compliance rates
- Change frequencies
## ποΈ Framework Architecture
### Component Interaction
```
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β AI Agents β β Templates β β Quality β
β β β β β Framework β
β β’ Data Engineer βββββΆβ β’ Pipelines βββββΆβ β’ Completeness β
β β’ Data Analyst β β β’ Quality β β β’ Accuracy β
β β’ Product Mgr β β β’ Business β β β’ Consistency β
β β’ Quality Eng β β β’ Analysis β β β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β β β
βββββββββββββββββββββββββΌββββββββββββββββββββββββ
βΌ
βββββββββββββββββββββββ
β Implementation β
β β
β β’ Data Pipelines β
β β’ Quality Checks β
β β’ Documentation β
β β’ Monitoring β
βββββββββββββββββββββββ
```
### Interactive Workflow Integration
1. **Requirements**: `agentic-data interactive` β `@data-product-manager` β `*gather-requirements`
2. **Design**: `@data-engineer` β `*build-pipeline`
3. **Analysis**: `@data-analyst` β `*analyze-data`
4. **Quality**: `@data-quality-engineer` β `*validate-data-quality`
5. **Orchestration**: `agentic-data workflow community-analytics-workflow`
6. **Documentation**: Agent-driven template creation with `*create-doc`
## π Development Workflow
### Typical Project Flow
```
Requirements β Architecture β Implementation β Quality β Deployment β Monitoring
β β β β β β
Product Mgr β Data Engineer β Templates β Quality Eng β DevOps β Operations
```
### Best Practices
1. **Start with Requirements**: Always begin with clear business requirements
2. **Design First**: Plan architecture before implementation
3. **Use Templates**: Leverage templates for consistency
4. **Implement Quality**: Build quality checks from the beginning
5. **Monitor Continuously**: Set up monitoring and alerting
6. **Document Everything**: Maintain comprehensive documentation
## π Scaling Considerations
### When to Upgrade to Enterprise
The Community Edition is designed for:
- Individual developers and small teams
- Learning and experimentation
- Small to medium data volumes
- Basic quality requirements
- Standard compliance needs
Consider Enterprise Edition when you need:
- **More Agents**: 4 additional specialized agents
- **More Templates**: 68 additional industry-specific templates
- **Advanced Quality**: 7-dimensional quality framework
- **ML Enhancement**: Machine learning-powered features
- **Enterprise Features**: Advanced compliance, security, collaboration
- **Professional Support**: SLA-based support and training
### Community Growth Path
1. **Learn**: Master the 4 core agents and essential templates
2. **Implement**: Build real projects with quality validation
3. **Contribute**: Participate in community development
4. **Scale**: Evaluate enterprise features as needs grow
5. **Upgrade**: Seamless migration path to enterprise edition
## π€ Community Principles
### Open Source Values
- **Transparency**: Open development and decision making
- **Collaboration**: Community-driven improvement
- **Accessibility**: Free access to essential capabilities
- **Quality**: High standards for code and documentation
- **Learning**: Educational focus and knowledge sharing
### Contribution Areas
- **Code Contributions**: Bug fixes, feature enhancements
- **Documentation**: Guides, examples, best practices
- **Templates**: New template contributions
- **Quality Checks**: Additional validation rules
- **Examples**: Real-world implementation examples
### Community Support
- **GitHub Issues**: Bug reports and feature requests
- **Discussions**: Questions, ideas, and knowledge sharing
- **Code Reviews**: Collaborative code improvement
- **Documentation**: Community-maintained guides
- **Examples**: Shared implementation patterns
## π Success Metrics
### Project Success Indicators
- **Time to Value**: Quick project setup and initial results
- **Quality Scores**: Consistent high-quality data
- **Stakeholder Satisfaction**: Business user acceptance
- **Technical Debt**: Maintainable, documented implementations
- **Knowledge Transfer**: Team understanding and adoption
### Framework Adoption
- **Agent Usage**: Regular use of multiple agents
- **Template Adoption**: Consistent template usage
- **Quality Implementation**: Active quality monitoring
- **Documentation**: Comprehensive project documentation
- **Community Engagement**: Participation in community activities
Understanding these core concepts will help you maximize the value of the ADSF Community Edition and build successful data engineering projects. π―