UNPKG

agentic-data-stack-community

Version:

AI Agentic Data Stack Framework - Community Edition. Open source data engineering framework with 4 core agents, essential templates, and 3-dimensional quality validation.

1,161 lines (984 loc) 45.5 kB
# Quality Checks Template # Purpose: Comprehensive data quality validation and monitoring framework # Version: 1.0.0 # Last Updated: 2025-01-23 metadata: template_id: "quality-checks-tmpl" version: "1.0.0" name: "Quality Checks Template" description: "Systematic framework for implementing data quality checks and validation" category: "data-engineering" tags: - data-quality - validation - testing - monitoring - data-integrity owner: "Data Engineering Team" created_date: "2025-01-23" last_modified: "2025-01-23" compliance: - ISO-27001 - SOC2 - GDPR dependencies: - quality-rules-tmpl - monitoring-tmpl template: structure: - quality_framework - data_profiling_checks - schema_validation_checks - business_rule_checks - statistical_anomaly_checks - referential_integrity_checks - completeness_checks - consistency_checks - timeliness_checks - automated_testing - monitoring_alerting sections: quality_framework: quality_dimensions: accuracy: definition: "Data correctly represents real-world entities" measurement: "Percentage of accurate records" examples: - "Email addresses are valid" - "Phone numbers follow correct format" - "Geographic coordinates are valid" validation_approaches: - "Format validation using regex patterns" - "Cross-reference with authoritative sources" - "Manual review of sample data" - "Business user feedback validation" completeness: definition: "Required data fields are populated" measurement: "Percentage of complete records" examples: - "Mandatory fields are not null" - "All required attributes present" - "No missing values in key columns" validation_approaches: - "Null value detection" - "Empty string identification" - "Required field validation" - "Record count verification" consistency: definition: "Data values are uniform across datasets" measurement: "Percentage of consistent records" examples: - "Same customer has identical data across systems" - "Date formats are standardized" - "Unit of measurement consistency" validation_approaches: - "Cross-system data comparison" - "Standardization rule enforcement" - "Format consistency checks" - "Reference data validation" timeliness: definition: "Data is available when needed" measurement: "Data freshness and latency metrics" examples: - "Data updated within SLA timeframes" - "Real-time data processing delays" - "Historical data availability" validation_approaches: - "Timestamp validation" - "Processing lag monitoring" - "SLA compliance tracking" - "Data availability checks" validity: definition: "Data conforms to defined formats and constraints" measurement: "Percentage of valid records" examples: - "Data types match schema definitions" - "Values fall within acceptable ranges" - "Enumerated values are from valid lists" validation_approaches: - "Schema validation" - "Range checking" - "Pattern matching" - "Constraint validation" uniqueness: definition: "No unwanted duplicate records exist" measurement: "Percentage of unique records" examples: - "Primary keys are unique" - "No duplicate customer records" - "Unique constraint enforcement" validation_approaches: - "Duplicate detection algorithms" - "Key uniqueness validation" - "Fuzzy matching for near-duplicates" - "Deduplication processes" quality_check_categories: preventive_checks: description: "Prevent bad data from entering the system" implementation_stage: "Data ingestion" examples: - "Input validation at source" - "Schema enforcement" - "Format validation" - "Business rule validation" detective_checks: description: "Identify quality issues in existing data" implementation_stage: "Data processing and storage" examples: - "Anomaly detection" - "Statistical profiling" - "Pattern recognition" - "Drift detection" corrective_checks: description: "Fix identified data quality issues" implementation_stage: "Data cleansing and transformation" examples: - "Data standardization" - "Missing value imputation" - "Duplicate removal" - "Error correction" quality_governance: quality_ownership: data_stewards: responsibilities: - "Define quality standards" - "Monitor quality metrics" - "Resolve quality issues" - "Approve quality rules" data_engineers: responsibilities: - "Implement quality checks" - "Build quality monitoring" - "Automate quality processes" - "Maintain quality infrastructure" business_users: responsibilities: - "Report quality issues" - "Validate business rules" - "Define quality requirements" - "Accept quality standards" quality_standards: - standard: "Data accuracy target" threshold: "99.5% accuracy for critical data" measurement: "Monthly validation" - standard: "Completeness requirement" threshold: "95% completeness for mandatory fields" measurement: "Daily monitoring" - standard: "Timeliness SLA" threshold: "Data available within 4 hours" measurement: "Continuous monitoring" data_profiling_checks: statistical_profiling: descriptive_statistics: numerical_columns: metrics: - "Count of non-null values" - "Mean, median, mode" - "Standard deviation and variance" - "Min, max, and percentiles" - "Skewness and kurtosis" anomaly_detection: - "Outlier identification using IQR method" - "Z-score based anomaly detection" - "Distribution drift monitoring" categorical_columns: metrics: - "Distinct value count" - "Value frequency distribution" - "Most/least common values" - "Cardinality analysis" quality_checks: - "Unexpected category values" - "Frequency distribution changes" - "New category emergence" temporal_columns: metrics: - "Date range analysis" - "Temporal distribution patterns" - "Seasonality detection" - "Trend analysis" quality_checks: - "Future date validation" - "Logical date sequences" - "Business calendar compliance" data_distribution_analysis: distribution_tests: - test: "Kolmogorov-Smirnov test" purpose: "Compare distributions between datasets" implementation: "Statistical comparison of cumulative distributions" - test: "Chi-square goodness of fit" purpose: "Test if data follows expected distribution" implementation: "Compare observed vs expected frequencies" drift_detection: - method: "Population Stability Index (PSI)" threshold: "PSI > 0.1 indicates significant drift" monitoring_frequency: "Daily for critical datasets" - method: "Kullback-Leibler divergence" purpose: "Measure distribution differences" alert_threshold: "KL divergence > 0.5" implementation_example: | ```python import pandas as pd import numpy as np from scipy import stats class DataProfiler: def __init__(self, dataset): self.dataset = dataset self.profile_results = {} def profile_numerical_column(self, column): data = self.dataset[column].dropna() profile = { 'count': len(data), 'null_count': self.dataset[column].isnull().sum(), 'mean': data.mean(), 'std': data.std(), 'min': data.min(), 'max': data.max(), 'percentiles': { '25th': data.quantile(0.25), '50th': data.quantile(0.50), '75th': data.quantile(0.75), '95th': data.quantile(0.95) }, 'outliers': self.detect_outliers(data), 'distribution': self.analyze_distribution(data) } return profile def detect_outliers(self, data): Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR outliers = data[(data < lower_bound) | (data > upper_bound)] return { 'count': len(outliers), 'percentage': len(outliers) / len(data) * 100, 'values': outliers.tolist() } def calculate_psi(self, expected, actual, buckets=10): expected_percents = np.histogram(expected, buckets)[0] / len(expected) actual_percents = np.histogram(actual, buckets)[0] / len(actual) # Add small value to avoid division by zero expected_percents = np.where(expected_percents == 0, 0.0001, expected_percents) actual_percents = np.where(actual_percents == 0, 0.0001, actual_percents) psi = np.sum((actual_percents - expected_percents) * np.log(actual_percents / expected_percents)) return psi ``` schema_validation_checks: structure_validation: schema_compliance: column_existence: validation: "Verify all required columns are present" implementation: "Compare actual vs expected column lists" error_handling: "Fail pipeline if critical columns missing" data_type_validation: validation: "Ensure columns match expected data types" implementation: "Type checking and conversion validation" error_handling: "Attempt conversion or flag for review" constraint_validation: validation: "Enforce column constraints (NOT NULL, UNIQUE, etc.)" implementation: "Database constraint checking" error_handling: "Quarantine violating records" schema_evolution: backward_compatibility: - "Allow optional new columns" - "Maintain existing column names" - "Preserve data type compatibility" - "Handle deprecated columns gracefully" forward_compatibility: - "Version schema definitions" - "Support multiple schema versions" - "Gradual migration strategies" - "Schema registry integration" implementation_example: | ```python from pydantic import BaseModel, ValidationError from typing import Optional, List import pandas as pd class CustomerSchema(BaseModel): customer_id: int first_name: str last_name: str email: str phone: Optional[str] = None registration_date: str is_active: bool = True class SchemaValidator: def __init__(self, schema_class): self.schema_class = schema_class def validate_dataframe(self, df: pd.DataFrame): validation_results = { 'valid_records': [], 'invalid_records': [], 'validation_errors': [] } for index, row in df.iterrows(): try: validated_record = self.schema_class(**row.to_dict()) validation_results['valid_records'].append(validated_record.dict()) except ValidationError as e: validation_results['invalid_records'].append({ 'row_index': index, 'data': row.to_dict(), 'errors': e.errors() }) validation_results['validation_errors'].extend(e.errors()) return validation_results def get_schema_compliance_report(self, df: pd.DataFrame): results = self.validate_dataframe(df) total_records = len(df) valid_records = len(results['valid_records']) return { 'total_records': total_records, 'valid_records': valid_records, 'invalid_records': total_records - valid_records, 'compliance_rate': valid_records / total_records * 100, 'error_summary': self.summarize_errors(results['validation_errors']) } ``` business_rule_checks: rule_definition_framework: rule_categories: domain_rules: description: "Business domain specific validations" examples: - "Age must be between 0 and 150" - "Order amount must be positive" - "Product category must be from approved list" implementation_approach: - "Rule engine integration" - "Custom validation functions" - "Lookup table validation" relationship_rules: description: "Rules governing relationships between data elements" examples: - "Order date must be before shipping date" - "Employee salary must be within grade range" - "Child records must have valid parent references" implementation_approach: - "Cross-column validation" - "Temporal consistency checks" - "Referential integrity validation" business_logic_rules: description: "Complex business process validations" examples: - "Account balance calculations" - "Pricing rule compliance" - "Eligibility criteria validation" implementation_approach: - "Stored procedure validation" - "External service validation" - "Rule engine processing" rule_implementation: declarative_rules: format: "YAML or JSON configuration" example: | ```yaml rules: - rule_id: "AGE_VALIDATION" description: "Age must be reasonable" condition: "age >= 0 AND age <= 150" severity: "ERROR" action: "REJECT" - rule_id: "EMAIL_FORMAT" description: "Email must be valid format" condition: "email MATCHES '^[\\w\\.-]+@[\\w\\.-]+\\.[a-zA-Z]{2,}$'" severity: "WARNING" action: "FLAG" ``` programmatic_rules: format: "Code-based rule definitions" example: | ```python class BusinessRules: @staticmethod def validate_age(age): if not (0 <= age <= 150): return ValidationResult( valid=False, message="Age must be between 0 and 150", severity="ERROR" ) return ValidationResult(valid=True) @staticmethod def validate_order_consistency(order_date, ship_date): if ship_date < order_date: return ValidationResult( valid=False, message="Ship date cannot be before order date", severity="ERROR" ) return ValidationResult(valid=True) ``` rule_execution_engine: execution_strategies: synchronous_validation: description: "Validate data immediately during processing" advantages: "Immediate feedback, prevents bad data propagation" disadvantages: "Slower processing, blocking operations" use_cases: "Critical data validation, real-time systems" asynchronous_validation: description: "Validate data after initial processing" advantages: "Faster processing, non-blocking operations" disadvantages: "Delayed feedback, potential bad data propagation" use_cases: "Batch processing, non-critical validations" batch_validation: description: "Validate data in scheduled batches" advantages: "Efficient resource utilization" disadvantages: "Delayed validation results" use_cases: "Large dataset validation, periodic checks" rule_performance_optimization: - "Rule execution order optimization" - "Parallel rule execution" - "Rule result caching" - "Incremental validation" - "Rule complexity analysis" statistical_anomaly_checks: anomaly_detection_methods: statistical_methods: z_score_analysis: description: "Identify values beyond standard deviations" formula: "z = (x - μ) / σ" threshold: "Typically |z| > 3 indicates anomaly" use_case: "Normally distributed numerical data" implementation: | ```python def detect_zscore_anomalies(data, threshold=3): z_scores = np.abs(stats.zscore(data)) anomalies = data[z_scores > threshold] return { 'anomaly_count': len(anomalies), 'anomaly_percentage': len(anomalies) / len(data) * 100, 'anomalous_values': anomalies.tolist(), 'z_scores': z_scores[z_scores > threshold].tolist() } ``` iqr_method: description: "Use interquartile range to identify outliers" formula: "Outliers: x < Q1 - 1.5*IQR or x > Q3 + 1.5*IQR" advantage: "Robust to distribution shape" use_case: "Non-normally distributed data" isolation_forest: description: "Machine learning approach for anomaly detection" characteristics: "Unsupervised, handles high-dimensional data" use_case: "Complex multivariate anomaly detection" time_series_anomalies: seasonal_decomposition: description: "Separate trend, seasonal, and residual components" anomaly_detection: "Identify anomalies in residual component" implementation: "STL decomposition or X-13ARIMA-SEATS" change_point_detection: description: "Identify significant changes in time series" methods: "CUSUM, Bayesian change point detection" use_case: "Detect shifts in data patterns" forecasting_based: description: "Compare actual vs predicted values" models: "ARIMA, Prophet, LSTM" anomaly_threshold: "Prediction error exceeds confidence interval" multivariate_anomaly_detection: correlation_analysis: description: "Detect anomalies in variable relationships" method: "Mahalanobis distance" threshold: "Chi-square distribution based" principal_component_analysis: description: "Reduce dimensionality and detect outliers" approach: "Reconstruct data and measure reconstruction error" advantage: "Handles high-dimensional data effectively" referential_integrity_checks: foreign_key_validation: parent_child_relationships: validation_rules: - "Child records must have valid parent references" - "Parent records cannot be deleted if children exist" - "Referential consistency across distributed systems" implementation_strategies: database_constraints: description: "Use database foreign key constraints" advantages: "Automatic enforcement, transaction safety" limitations: "Single database scope, performance impact" application_validation: description: "Validate references in application code" advantages: "Flexible logic, cross-system validation" limitations: "Potential consistency gaps, complex implementation" batch_validation: description: "Periodic validation of referential integrity" advantages: "Performance optimization, bulk checking" limitations: "Delayed error detection" lookup_table_validation: validation_scenarios: - "Code values exist in reference tables" - "Enumerated values are from valid sets" - "Master data references are current" implementation_example: | ```python class ReferentialValidator: def __init__(self, reference_data): self.reference_data = reference_data def validate_foreign_keys(self, dataset, foreign_key_mappings): validation_results = {} for table, fk_config in foreign_key_mappings.items(): fk_column = fk_config['foreign_key'] ref_table = fk_config['reference_table'] ref_column = fk_config['reference_key'] # Get unique foreign key values fk_values = set(dataset[fk_column].dropna().unique()) # Get valid reference values ref_values = set(self.reference_data[ref_table][ref_column].unique()) # Find invalid references invalid_fks = fk_values - ref_values validation_results[table] = { 'total_fk_values': len(fk_values), 'valid_fk_values': len(fk_values - invalid_fks), 'invalid_fk_values': invalid_fks, 'validity_percentage': (len(fk_values - invalid_fks) / len(fk_values)) * 100 } return validation_results ``` cross_system_validation: distributed_referential_integrity: challenges: - "Network latency and availability" - "Eventual consistency models" - "System synchronization timing" - "Partial failure handling" solutions: - "Asynchronous validation with compensation" - "Event-driven consistency maintenance" - "Cached reference data with TTL" - "Graceful degradation strategies" completeness_checks: mandatory_field_validation: null_value_detection: validation_levels: strict_validation: description: "No null values allowed in mandatory fields" action: "Reject records with null mandatory fields" use_case: "Critical business data" conditional_validation: description: "Null validation based on business rules" action: "Context-dependent null handling" use_case: "Complex business scenarios" implementation_strategies: - "Database NOT NULL constraints" - "Application-level validation" - "ETL pipeline validation" - "Data entry form validation" record_completeness_scoring: scoring_methodology: simple_scoring: formula: "Completeness = (Non-null fields / Total fields) * 100" use_case: "Basic completeness measurement" weighted_scoring: formula: "Completeness = Σ(Field_weight * Field_completeness) / Σ(Field_weights)" use_case: "Business-critical field prioritization" implementation_example: | ```python class CompletenessValidator: def __init__(self, field_weights=None): self.field_weights = field_weights or {} def calculate_record_completeness(self, record): total_fields = len(record) non_null_fields = sum(1 for value in record.values() if pd.notna(value)) if not self.field_weights: return (non_null_fields / total_fields) * 100 # Weighted completeness calculation weighted_completeness = 0 total_weight = 0 for field, value in record.items(): weight = self.field_weights.get(field, 1) total_weight += weight if pd.notna(value): weighted_completeness += weight return (weighted_completeness / total_weight) * 100 def generate_completeness_report(self, dataset): completeness_scores = [] field_completeness = {} # Calculate per-record completeness for _, record in dataset.iterrows(): score = self.calculate_record_completeness(record.to_dict()) completeness_scores.append(score) # Calculate per-field completeness for column in dataset.columns: non_null_count = dataset[column].notna().sum() field_completeness[column] = (non_null_count / len(dataset)) * 100 return { 'overall_completeness': np.mean(completeness_scores), 'record_completeness_distribution': { 'min': min(completeness_scores), 'max': max(completeness_scores), 'mean': np.mean(completeness_scores), 'std': np.std(completeness_scores) }, 'field_completeness': field_completeness, 'incomplete_records': len([s for s in completeness_scores if s < 100]) } ``` data_availability_checks: expected_data_presence: validation_scenarios: - "Daily data feeds are received" - "All expected data sources are present" - "Minimum record counts are met" - "Data coverage across time periods" monitoring_approaches: - "Automated data arrival detection" - "Record count trend analysis" - "Data freshness monitoring" - "Source system availability checks" consistency_checks: cross_dataset_consistency: data_synchronization_validation: validation_scenarios: same_entity_different_systems: description: "Validate same entity across multiple systems" example: "Customer data in CRM vs Billing system" validation_method: "Key-based record matching and comparison" aggregation_consistency: description: "Validate aggregated values match detail records" example: "Sum of line items equals order total" validation_method: "Recalculation and comparison" temporal_consistency: description: "Validate data consistency over time" example: "Balance changes match transaction history" validation_method: "Audit trail validation" format_standardization: standardization_rules: - "Date formats are consistent (ISO 8601)" - "Currency amounts use standard precision" - "Text fields use consistent case" - "Enumerated values follow standard lists" implementation_example: | ```python class ConsistencyValidator: def __init__(self): self.standardization_rules = { 'date_format': '%Y-%m-%d', 'currency_precision': 2, 'text_case': 'upper', 'phone_format': r'^\+?1?[-.\s]?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}$' } def validate_cross_system_consistency(self, system1_data, system2_data, key_field): # Match records by key merged_data = pd.merge( system1_data, system2_data, on=key_field, suffixes=('_sys1', '_sys2') ) consistency_results = {} # Compare common fields common_fields = [col.replace('_sys1', '') for col in merged_data.columns if col.endswith('_sys1') and col.replace('_sys1', '_sys2') in merged_data.columns] for field in common_fields: sys1_col = f"{field}_sys1" sys2_col = f"{field}_sys2" matches = merged_data[sys1_col] == merged_data[sys2_col] consistency_results[field] = { 'total_comparisons': len(merged_data), 'matches': matches.sum(), 'consistency_rate': (matches.sum() / len(merged_data)) * 100, 'discrepancies': merged_data[~matches][[key_field, sys1_col, sys2_col]] } return consistency_results ``` timeliness_checks: data_freshness_validation: freshness_requirements: real_time_data: max_latency: "< 1 minute" validation_method: "Timestamp comparison" alert_threshold: "Latency > 2 minutes" near_real_time_data: max_latency: "< 15 minutes" validation_method: "Processing lag monitoring" alert_threshold: "Latency > 30 minutes" batch_data: max_latency: "< 4 hours from source update" validation_method: "ETL completion monitoring" alert_threshold: "Batch processing delay > 6 hours" sla_compliance_monitoring: sla_definitions: - sla_name: "Customer data synchronization" target: "Data updated within 1 hour" measurement: "Time from source change to availability" penalty: "Business process delays" - sla_name: "Financial reporting data" target: "Daily data available by 6 AM" measurement: "ETL completion time" penalty: "Regulatory reporting delays" monitoring_implementation: | ```python class TimelinessValidator: def __init__(self, sla_definitions): self.sla_definitions = sla_definitions def validate_data_freshness(self, dataset, timestamp_column): current_time = pd.Timestamp.now() data_timestamps = pd.to_datetime(dataset[timestamp_column]) # Calculate data age data_age = current_time - data_timestamps freshness_report = { 'total_records': len(dataset), 'avg_age_minutes': data_age.dt.total_seconds().mean() / 60, 'max_age_minutes': data_age.dt.total_seconds().max() / 60, 'stale_data_count': 0, 'freshness_distribution': {} } # Check against SLA thresholds for sla in self.sla_definitions: threshold_minutes = sla['threshold_minutes'] stale_records = data_age.dt.total_seconds() > (threshold_minutes * 60) freshness_report['freshness_distribution'][sla['name']] = { 'threshold_minutes': threshold_minutes, 'compliant_records': (~stale_records).sum(), 'non_compliant_records': stale_records.sum(), 'compliance_rate': (~stale_records).sum() / len(dataset) * 100 } return freshness_report ``` automated_testing: test_automation_framework: test_categories: unit_tests: description: "Test individual quality check functions" scope: "Single quality rule or validation function" execution: "Continuous integration pipeline" examples: - "Test email validation regex" - "Test statistical outlier detection" - "Test foreign key validation logic" integration_tests: description: "Test quality checks in data pipeline context" scope: "End-to-end quality validation process" execution: "Pipeline deployment validation" examples: - "Test quality checks with sample datasets" - "Test error handling and recovery" - "Test quality report generation" regression_tests: description: "Ensure quality checks maintain accuracy over time" scope: "Historical quality validation results" execution: "Periodic regression testing" examples: - "Compare quality scores over time" - "Validate consistent anomaly detection" - "Test schema evolution handling" test_data_management: synthetic_test_data: description: "Generate test data with known quality issues" benefits: "Controlled testing scenarios, privacy protection" generation_strategies: - "Statistical distribution sampling" - "Rule-based data generation" - "ML-based synthetic data creation" anonymized_production_data: description: "Use real data with sensitive information removed" benefits: "Realistic data patterns, actual quality issues" considerations: - "Data privacy compliance" - "Anonymization quality" - "Data freshness management" test_automation_example: | ```python import unittest import pandas as pd from data_quality_framework import QualityValidator class TestDataQualityChecks(unittest.TestCase): def setUp(self): self.validator = QualityValidator() # Create test datasets self.valid_data = pd.DataFrame({ 'customer_id': [1, 2, 3, 4, 5], 'email': ['user1@test.com', 'user2@test.com', 'user3@test.com', 'user4@test.com', 'user5@test.com'], 'age': [25, 30, 45, 35, 28], 'registration_date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'] }) self.invalid_data = pd.DataFrame({ 'customer_id': [1, 2, None, 4, 5], 'email': ['user1@test.com', 'invalid-email', 'user3@test.com', '', 'user5@test.com'], 'age': [25, 200, 45, -5, 28], 'registration_date': ['2023-01-01', '2023-13-02', '2023-01-03', '2023-01-04', 'invalid-date'] }) def test_email_validation(self): # Test valid emails valid_results = self.validator.validate_email_format(self.valid_data['email']) self.assertEqual(valid_results['valid_count'], 5) self.assertEqual(valid_results['invalid_count'], 0) # Test invalid emails invalid_results = self.validator.validate_email_format(self.invalid_data['email']) self.assertEqual(invalid_results['valid_count'], 2) self.assertEqual(invalid_results['invalid_count'], 3) def test_age_range_validation(self): # Test valid ages valid_results = self.validator.validate_age_range(self.valid_data['age']) self.assertEqual(valid_results['valid_count'], 5) # Test invalid ages invalid_results = self.validator.validate_age_range(self.invalid_data['age']) self.assertEqual(invalid_results['valid_count'], 2) self.assertIn(200, invalid_results['invalid_values']) self.assertIn(-5, invalid_results['invalid_values']) def test_completeness_validation(self): # Test complete data valid_completeness = self.validator.calculate_completeness(self.valid_data) self.assertEqual(valid_completeness['overall_completeness'], 100.0) # Test incomplete data invalid_completeness = self.validator.calculate_completeness(self.invalid_data) self.assertLess(invalid_completeness['overall_completeness'], 100.0) if __name__ == '__main__': unittest.main() ``` monitoring_alerting: real_time_monitoring: monitoring_architecture: data_quality_dashboard: components: - "Real-time quality metrics visualization" - "Quality trend analysis charts" - "Anomaly detection alerts" - "Data lineage impact visualization" key_metrics: - "Data quality score (overall and by dimension)" - "Quality rule pass/fail rates" - "Data volume and freshness metrics" - "Error rates and types" automated_monitoring: monitoring_frequency: - "Continuous: Critical data streams" - "Hourly: Near real-time data" - "Daily: Batch processed data" - "Weekly: Historical trend analysis" monitoring_scope: - "Data ingestion quality" - "Transformation accuracy" - "Output data validation" - "End-to-end pipeline health" alerting_configuration: alert_severity_levels: critical: conditions: - "Data quality score drops below 90%" - "Critical business rules fail" - "Data pipeline failure" response: - "Immediate notification to on-call team" - "Automatic pipeline pause (if configured)" - "Escalation to management after 30 minutes" warning: conditions: - "Data quality score drops below 95%" - "Anomaly detection threshold exceeded" - "SLA near breach" response: - "Notification to data team" - "Log detailed information" - "Schedule review within 4 hours" info: conditions: - "Quality improvement detected" - "New data patterns identified" - "Successful quality remediation" response: - "Log information" - "Update quality metrics" - "Include in daily reports" notification_channels: - channel: "Email" recipients: ["data-quality-team@company.com"] alert_types: ["Critical", "Warning"] - channel: "Slack" recipients: ["#data-quality-alerts"] alert_types: ["Critical", "Warning", "Info"] - channel: "PagerDuty" recipients: ["Data Engineering On-Call"] alert_types: ["Critical"] - channel: "JIRA" project: "Data Quality Issues" alert_types: ["Critical", "Warning"] quality_reporting: executive_reporting: monthly_quality_scorecard: metrics: - "Overall data quality score trend" - "Quality improvement initiatives impact" - "Cost of poor data quality" - "Quality SLA compliance rates" quality_incident_summary: content: - "Number and severity of quality incidents" - "Mean time to detection and resolution" - "Root cause analysis summary" - "Prevention measures implemented" operational_reporting: daily_quality_reports: content: - "Quality check results by dataset" - "Anomaly detection findings" - "Data freshness compliance" - "Outstanding quality issues" quality_trend_analysis: content: - "Quality score trends over time" - "Seasonal patterns in data quality" - "Quality improvement effectiveness" - "Predictive quality forecasting" template_guidance: implementation_strategy: phase_1_foundation: duration: "4-6 weeks" focus: "Basic quality checks implementation" deliverables: - "Schema validation checks" - "Completeness validation" - "Basic business rule validation" - "Simple monitoring dashboard" phase_2_expansion: duration: "6-8 weeks" focus: "Advanced quality checks and automation" deliverables: - "Statistical anomaly detection" - "Referential integrity validation" - "Automated testing framework" - "Enhanced monitoring and alerting" phase_3_optimization: duration: "4-6 weeks" focus: "Performance optimization and advanced features" deliverables: - "Machine learning based anomaly detection" - "Predictive quality analytics" - "Advanced reporting and visualization" - "Quality governance processes" best_practices: - "Start with critical business data first" - "Implement checks incrementally" - "Balance thoroughness with performance" - "Involve business stakeholders in rule definition" - "Maintain comprehensive documentation" - "Regular review and update of quality rules" integration_points: - data_governance: "Align with governance policies" - monitoring_setup: "Integrate with monitoring infrastructure" - incident_management: "Connect to incident response processes" - data_lineage: "Track quality through data lineage" template_metadata: recommended_review_cycle: "Monthly quality framework assessment" minimum_fields: - quality_framework - data_profiling_checks - schema_validation_checks - business_rule_checks - automated_testing - monitoring_alerting automation_potential: - "Automated test generation from schemas" - "ML-based anomaly detection" - "Self-healing data quality processes" - "Dynamic quality rule adjustment" success_metrics: - "Data quality score improvement" - "Reduction in quality incidents" - "Mean time to quality issue detection" - "Business user satisfaction with data quality"