agentic-data-stack-community
Version:
AI Agentic Data Stack Framework - Community Edition. Open source data engineering framework with 4 core agents, essential templates, and 3-dimensional quality validation.
427 lines (339 loc) β’ 14 kB
Markdown
# AI Agentic Data Stack Framework - Community Edition
[](LICENSE.txt)
[](package.json)
[](https://github.com/barnyp/agentic-data-stack-framework-community)
**Open source data engineering and analytics framework with interactive AI agents, comprehensive templates, and complete example projects.**
## π Quick Start
```bash
# Install globally
npm install -g agentic-data-stack-community
# Try the complete example project first
cd examples/simple-ecommerce-analytics
python sample-data/generate-sample-data.py
# Activate interactive agents
agentic-data agent data-analyst
*analyze-data
# Or run structured workflows
agentic-data workflow community-analytics-workflow
# Create your own project
agentic-data init my-analytics-project
```
## π What's Included
### π€ 4 Interactive AI Agents
- **Data Engineer** (Emma βοΈ): Pipeline development, ETL processes, infrastructure setup
- **Data Analyst** (Riley π): Customer segmentation, RFM analysis, business insights
- **Data Product Manager** (Morgan π): Requirements gathering, stakeholder coordination
- **Data Quality Engineer** (Quinn π): 3-dimensional quality validation and monitoring
### π 20 Essential Templates
- **Data Contracts**: Customer data, order processing, product catalogs
- **Implementation**: SQL analysis, Python validation scripts
- **Project Setup**: Business requirements, architecture planning
- **Quality Validation**: Automated testing and monitoring
- **Documentation**: User guides, technical specifications
### π 3-Dimensional Quality Framework
- **Completeness**: Data availability and coverage validation
- **Accuracy**: Format checking and type validation
- **Consistency**: Cross-reference validation and uniqueness checks
### π― Interactive Agent System
- **Agent Activation**: `@data-analyst` for guided assistance
- **Command Execution**: `*analyze-data` for task-specific operations
- **Interactive Shell**: `agentic-data interactive` for persistent agent sessions
- **Multi-Agent Workflows**: Advanced orchestration with context handoffs
- **Progressive Disclosure**: 12+ elicitation methods for quality content creation
- **Session Persistence**: Workflow continuity and progress tracking
### π Complete E-commerce Example
- Customer segmentation with RFM analysis
- Data quality validation scripts
- Business requirements documentation
- Sample data generation tools
- Interactive agent walkthroughs
## π¦ Installation
### Global Installation (Recommended)
```bash
npm install -g agentic-data-stack-community
```
### Local Project Installation
```bash
npm install agentic-data-stack-community
npx agentic-data init my-project
```
### Development Installation
```bash
git clone https://github.com/barnyp/agentic-data-stack-framework-community
cd agentic-data-stack-framework-community
npm install
npm link # Make CLI available globally
```
## π οΈ CLI Commands
```bash
# Framework Information
agentic-data info # Display framework overview
agentic-data --version # Show version
# Interactive Shell (Recommended)
agentic-data interactive # Enter interactive shell mode
# Interactive Agents
agentic-data agent <agent-name> # Activate interactive agent (legacy)
agentic-data agents list # List available agents
agentic-data agents show <agent> # Show agent details
# Workflows and Tasks
agentic-data workflow <workflow-name> # Execute structured workflow
agentic-data task <task-name> # Execute specific task
# Templates and Examples
agentic-data templates list # List available templates
agentic-data templates show <template> # Show template details
agentic-data examples list # List available examples
# Project Management
agentic-data init [project-name] # Create new project
agentic-data validate # Run quality validation
```
## π Interactive Shell Mode
The interactive shell provides a persistent, conversational interface with AI agents:
```bash
# Enter interactive mode
agentic-data interactive
# Inside the shell:
@data-analyst # Activate Data Analyst agent
*help # Show agent capabilities
*task # List available tasks
*analyze-data # Execute data analysis task
*create-doc analysis-report # Create document from template
*exit # Deactivate current agent
exit # Exit interactive shell
```
### Interactive Commands
- **Agent Activation**: `@data-engineer`, `@data-analyst`, `@data-product-manager`, `@data-quality-engineer`
- **Task Commands**: `*task <name>`, `*analyze-data`, `*create-dashboard`, `*define-metrics`
- **Document Commands**: `*create-doc <template>`, `*shard-doc <path>`, `*manage-docs`
- **Knowledge Commands**: `*kb-mode`, `*search <query>`
- **Expansion Commands**: `*manage-packs`, `*install-pack <name>`, `*create-pack`
## ποΈ Framework Architecture
```
AI Agentic Data Stack Framework - Community Edition
βββ π€ Interactive AI Agents (4)
β βββ Data Engineer (Emma βοΈ)
β βββ Data Analyst (Riley π)
β βββ Data Product Manager (Morgan π)
β βββ Data Quality Engineer (Quinn π)
βββ π Templates & Tasks (30)
β βββ Templates (20): Data contracts, analysis, dashboards
β βββ Tasks (10): Pipeline building, analysis, quality checks
β βββ Checklists (8): Quality validation, deployment
βββ π Workflows (9)
β βββ Brownfield (5): System integration workflows
β βββ Greenfield (4): New project workflows
βββ π Quality Framework
β βββ Completeness Validation
β βββ Accuracy Checking
β βββ Consistency Verification
βββ π Complete Examples
βββ E-commerce Analytics (SQL + Python)
βββ Interactive CLI Interface
βββ Sample Data Generation
```
## π― Use Cases
### Customer Analytics
- **RFM Segmentation**: Recency, Frequency, Monetary analysis
- **Customer Journey**: Lifecycle and behavior tracking
- **Marketing Optimization**: Targeted campaign development
### Data Quality Management
- **Automated Validation**: 3-dimensional quality checks
- **Data Monitoring**: Continuous quality tracking
- **Issue Detection**: Format and consistency validation
### Business Intelligence
- **Reporting**: Automated insight generation
- **Dashboard Development**: Self-service analytics
- **Performance Tracking**: KPI monitoring and alerts
## π Complete Example: E-commerce Customer Segmentation
### 1. Try the Built-in Example
```bash
# Navigate to the included example
cd examples/simple-ecommerce-analytics
# Generate realistic sample data
python sample-data/generate-sample-data.py
```
### 2. Use Interactive Shell Mode
```bash
# Enter interactive mode (recommended)
agentic-data interactive
# Start with requirements gathering
@data-product-manager
*gather-requirements
*exit
# Perform data analysis
@data-analyst
*analyze-data
*segment-customers
*exit
# Validate data quality
@data-quality-engineer
*implement-quality-checks
*exit
# Exit interactive shell
exit
```
### 3. Or Use Structured Workflows
```bash
# Execute the complete workflow with agent handoffs
agentic-data workflow community-analytics-workflow
# Follow the interactive prompts for each step
```
### Expected Results
- **5-7 Customer Segments**: Champions, Loyal Customers, At Risk, etc.
- **90%+ Data Quality**: Across completeness, accuracy, consistency
- **Marketing Ready Lists**: Exportable customer segments with campaign recommendations
## π§ Configuration
### Project Structure
```
my-project/
βββ data-contracts/ # Data specifications
βββ implementation/ # SQL scripts & Python code
βββ documentation/ # Project documentation
βββ validation/ # Quality validation scripts
βββ sample-data/ # Test data and generators
βββ README.md # Project overview
```
### Data Contracts Example
```yaml
# customer-data-contract.yaml
contract_metadata:
name: "customer_data_contract_community"
framework_version: "AI Agentic Data Stack Community v1.0"
business_context:
objective: "Customer segmentation for targeted marketing"
quality_framework:
dimensions:
completeness:
customer_id: {threshold: 100.0, criticality: "critical"}
email: {threshold: 95.0, criticality: "high"}
accuracy:
email_format: {threshold: 95.0, validation: "regex_email"}
consistency:
customer_id_unique: {threshold: 100.0, check: "uniqueness"}
```
## π Getting Started Tutorial
### Step 1: Install and Try Example
```bash
npm install -g agentic-data-stack-community
# Start with the complete example (recommended)
cd examples/simple-ecommerce-analytics
python sample-data/generate-sample-data.py
```
### Step 2: Explore Interactive Shell
```bash
# See what's available
agentic-data info
agentic-data agents list
# Enter interactive shell mode
agentic-data interactive
# Activate your first agent
@data-analyst
*help
*task
*analyze-data
*exit
# Exit shell
exit
```
### Step 3: Try Workflows
```bash
# Execute structured multi-agent workflows
agentic-data workflow community-analytics-workflow
# Follow the interactive prompts for each step
```
### Step 4: Create Your Own Project
```bash
# Initialize your own project
agentic-data init my-analytics-project
cd my-analytics-project
# Copy patterns from the example
cp -r ../examples/simple-ecommerce-analytics/implementation .
```
### Step 5: Interactive Shell
```bash
# Enter persistent interactive mode
agentic-data interactive
# Try different agents and commands
```
## π Performance and Scale
### Community Edition Capabilities
- **Data Volume**: Up to 1M records per analysis
- **Processing**: Single-machine processing optimized
- **Quality Checks**: 3-dimensional framework
- **Export Formats**: CSV, JSON for marketing tools
- **Update Frequency**: Daily batch processing
### Performance Benchmarks
- **Segmentation Analysis**: ~30 seconds for 100K customers
- **Quality Validation**: ~15 seconds for 500K records
- **Data Export**: ~5 seconds for 50K customer lists
## π€ Community & Support
### Community Resources
- **GitHub Discussions**: Ask questions, share insights
- **Documentation**: Complete guides and tutorials
- **Examples**: Real-world implementations
- **Contributing**: Help improve the framework
### Getting Help
1. **Check Documentation**: Start with README and examples
2. **Search Issues**: Look for similar questions on GitHub
3. **Ask Community**: Post in GitHub Discussions
4. **Report Bugs**: Create detailed issue reports
### Contributing Guidelines
We welcome contributions! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for:
- Code contribution process
- Documentation improvements
- Example submissions
- Bug reporting guidelines
## π’ Enterprise Edition
Ready for advanced features? Enterprise Edition includes:
### Additional Capabilities
- **8 Specialized Agents**: Including Data Scientist, Governance Officer, Experience Designer
- **88 Interactive Templates**: Industry-specific solutions and advanced patterns
- **7-Dimensional Quality**: ML-enhanced validation with predictive analytics
- **Real-time Collaboration**: Multi-user workflows and approval processes
- **Advanced Compliance**: HIPAA, GDPR, SOX automation
- **Professional Support**: Training, consulting, and technical support
### Industry Solutions
- **Healthcare**: HIPAA-compliant patient analytics
- **Financial Services**: Risk modeling and compliance
- **Retail**: Advanced recommendation engines
- **Manufacturing**: Supply chain optimization
### Contact Enterprise
π **Sales**: enterprise@agenticdatastack.com
π **Website**: [Enterprise Features](https://www.agenticdatastack.com/)
π
**Demo**: Schedule a personalized demonstration
## π License & Legal
### Community Edition License
This Community Edition is licensed under the [MIT License](LICENSE.txt).
### Comparison
| Feature | Community Edition | Enterprise Edition |
|---------|------------------|-------------------|
| AI Agents | 4 Core Agents | 8 Specialized Agents |
| Templates | 20 Essential | 88 Interactive |
| Quality Framework | 3-Dimensional | 7-Dimensional + ML |
| Support | Community | Professional |
| License | MIT (Open Source) | Commercial |
| Compliance | Basic | Advanced (HIPAA, GDPR) |
<!-- ## πΊοΈ Roadmap
### Community Edition v1.1 (Q4 2025)
- Additional example implementations
- Enhanced CLI with project templates
- Improved documentation and tutorials
- Community-contributed templates
### Future Releases
- Integration with popular data tools
- Advanced visualization templates
- Multi-language support
- Performance optimizations -->
<!-- ---
## π Success Stories
> *"The Community Edition helped us implement customer segmentation in just 2 days. The RFM analysis template saved us weeks of development time."*
> **β Sarah Chen, Marketing Analytics Manager**
> *"Love the 3-dimensional quality framework. It caught data issues we didn't even know we had."*
> **β Mike Rodriguez, Data Engineer**
> *"Perfect for learning data engineering patterns. The examples are realistic and well-documented."*
> **β Lisa Park, Data Science Student** -->
---
**π Ready to transform your data operations? Start with `cd examples/simple-ecommerce-analytics` and explore interactive agents!**
**Framework**: AI Agentic Data Stack - Community Edition v1.1.2
**License**: MIT
**Community**: [GitHub Discussions](https://github.com/barnyp/agentic-data-stack-framework-community/discussions)
**Enterprise**: enterprise@agenticdatastack.com