UNPKG

aframe-extras

Version:

Add-ons and examples for A-Frame VR.

1,621 lines (1,381 loc) 326 kB
(function webpackUniversalModuleDefinition(root, factory) { if(typeof exports === 'object' && typeof module === 'object') module.exports = factory(require("THREE")); else if(typeof define === 'function' && define.amd) define(["THREE"], factory); else { var a = typeof exports === 'object' ? factory(require("THREE")) : factory(root["THREE"]); for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i]; } })(self, (__WEBPACK_EXTERNAL_MODULE_three__) => { return /******/ (() => { // webpackBootstrap /******/ var __webpack_modules__ = ({ /***/ "./node_modules/three/examples/jsm/curves/NURBSCurve.js": /*!**************************************************************!*\ !*** ./node_modules/three/examples/jsm/curves/NURBSCurve.js ***! \**************************************************************/ /***/ ((__unused_webpack___webpack_module__, __webpack_exports__, __webpack_require__) => { "use strict"; __webpack_require__.r(__webpack_exports__); /* harmony export */ __webpack_require__.d(__webpack_exports__, { /* harmony export */ NURBSCurve: () => (/* binding */ NURBSCurve) /* harmony export */ }); /* harmony import */ var three__WEBPACK_IMPORTED_MODULE_0__ = __webpack_require__(/*! three */ "three"); /* harmony import */ var _curves_NURBSUtils_js__WEBPACK_IMPORTED_MODULE_1__ = __webpack_require__(/*! ../curves/NURBSUtils.js */ "./node_modules/three/examples/jsm/curves/NURBSUtils.js"); /** * NURBS curve object * * Derives from Curve, overriding getPoint and getTangent. * * Implementation is based on (x, y [, z=0 [, w=1]]) control points with w=weight. * **/ class NURBSCurve extends three__WEBPACK_IMPORTED_MODULE_0__.Curve { constructor( degree, knots /* array of reals */, controlPoints /* array of Vector(2|3|4) */, startKnot /* index in knots */, endKnot /* index in knots */ ) { super(); this.degree = degree; this.knots = knots; this.controlPoints = []; // Used by periodic NURBS to remove hidden spans this.startKnot = startKnot || 0; this.endKnot = endKnot || ( this.knots.length - 1 ); for ( let i = 0; i < controlPoints.length; ++ i ) { // ensure Vector4 for control points const point = controlPoints[ i ]; this.controlPoints[ i ] = new three__WEBPACK_IMPORTED_MODULE_0__.Vector4( point.x, point.y, point.z, point.w ); } } getPoint( t, optionalTarget = new three__WEBPACK_IMPORTED_MODULE_0__.Vector3() ) { const point = optionalTarget; const u = this.knots[ this.startKnot ] + t * ( this.knots[ this.endKnot ] - this.knots[ this.startKnot ] ); // linear mapping t->u // following results in (wx, wy, wz, w) homogeneous point const hpoint = _curves_NURBSUtils_js__WEBPACK_IMPORTED_MODULE_1__.calcBSplinePoint( this.degree, this.knots, this.controlPoints, u ); if ( hpoint.w !== 1.0 ) { // project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1) hpoint.divideScalar( hpoint.w ); } return point.set( hpoint.x, hpoint.y, hpoint.z ); } getTangent( t, optionalTarget = new three__WEBPACK_IMPORTED_MODULE_0__.Vector3() ) { const tangent = optionalTarget; const u = this.knots[ 0 ] + t * ( this.knots[ this.knots.length - 1 ] - this.knots[ 0 ] ); const ders = _curves_NURBSUtils_js__WEBPACK_IMPORTED_MODULE_1__.calcNURBSDerivatives( this.degree, this.knots, this.controlPoints, u, 1 ); tangent.copy( ders[ 1 ] ).normalize(); return tangent; } } /***/ }), /***/ "./node_modules/three/examples/jsm/curves/NURBSUtils.js": /*!**************************************************************!*\ !*** ./node_modules/three/examples/jsm/curves/NURBSUtils.js ***! \**************************************************************/ /***/ ((__unused_webpack___webpack_module__, __webpack_exports__, __webpack_require__) => { "use strict"; __webpack_require__.r(__webpack_exports__); /* harmony export */ __webpack_require__.d(__webpack_exports__, { /* harmony export */ calcBSplineDerivatives: () => (/* binding */ calcBSplineDerivatives), /* harmony export */ calcBSplinePoint: () => (/* binding */ calcBSplinePoint), /* harmony export */ calcBasisFunctionDerivatives: () => (/* binding */ calcBasisFunctionDerivatives), /* harmony export */ calcBasisFunctions: () => (/* binding */ calcBasisFunctions), /* harmony export */ calcKoverI: () => (/* binding */ calcKoverI), /* harmony export */ calcNURBSDerivatives: () => (/* binding */ calcNURBSDerivatives), /* harmony export */ calcRationalCurveDerivatives: () => (/* binding */ calcRationalCurveDerivatives), /* harmony export */ calcSurfacePoint: () => (/* binding */ calcSurfacePoint), /* harmony export */ calcVolumePoint: () => (/* binding */ calcVolumePoint), /* harmony export */ findSpan: () => (/* binding */ findSpan) /* harmony export */ }); /* harmony import */ var three__WEBPACK_IMPORTED_MODULE_0__ = __webpack_require__(/*! three */ "three"); /** * NURBS utils * * See NURBSCurve and NURBSSurface. **/ /************************************************************** * NURBS Utils **************************************************************/ /* Finds knot vector span. p : degree u : parametric value U : knot vector returns the span */ function findSpan( p, u, U ) { const n = U.length - p - 1; if ( u >= U[ n ] ) { return n - 1; } if ( u <= U[ p ] ) { return p; } let low = p; let high = n; let mid = Math.floor( ( low + high ) / 2 ); while ( u < U[ mid ] || u >= U[ mid + 1 ] ) { if ( u < U[ mid ] ) { high = mid; } else { low = mid; } mid = Math.floor( ( low + high ) / 2 ); } return mid; } /* Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2 span : span in which u lies u : parametric point p : degree U : knot vector returns array[p+1] with basis functions values. */ function calcBasisFunctions( span, u, p, U ) { const N = []; const left = []; const right = []; N[ 0 ] = 1.0; for ( let j = 1; j <= p; ++ j ) { left[ j ] = u - U[ span + 1 - j ]; right[ j ] = U[ span + j ] - u; let saved = 0.0; for ( let r = 0; r < j; ++ r ) { const rv = right[ r + 1 ]; const lv = left[ j - r ]; const temp = N[ r ] / ( rv + lv ); N[ r ] = saved + rv * temp; saved = lv * temp; } N[ j ] = saved; } return N; } /* Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1. p : degree of B-Spline U : knot vector P : control points (x, y, z, w) u : parametric point returns point for given u */ function calcBSplinePoint( p, U, P, u ) { const span = findSpan( p, u, U ); const N = calcBasisFunctions( span, u, p, U ); const C = new three__WEBPACK_IMPORTED_MODULE_0__.Vector4( 0, 0, 0, 0 ); for ( let j = 0; j <= p; ++ j ) { const point = P[ span - p + j ]; const Nj = N[ j ]; const wNj = point.w * Nj; C.x += point.x * wNj; C.y += point.y * wNj; C.z += point.z * wNj; C.w += point.w * Nj; } return C; } /* Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3. span : span in which u lies u : parametric point p : degree n : number of derivatives to calculate U : knot vector returns array[n+1][p+1] with basis functions derivatives */ function calcBasisFunctionDerivatives( span, u, p, n, U ) { const zeroArr = []; for ( let i = 0; i <= p; ++ i ) zeroArr[ i ] = 0.0; const ders = []; for ( let i = 0; i <= n; ++ i ) ders[ i ] = zeroArr.slice( 0 ); const ndu = []; for ( let i = 0; i <= p; ++ i ) ndu[ i ] = zeroArr.slice( 0 ); ndu[ 0 ][ 0 ] = 1.0; const left = zeroArr.slice( 0 ); const right = zeroArr.slice( 0 ); for ( let j = 1; j <= p; ++ j ) { left[ j ] = u - U[ span + 1 - j ]; right[ j ] = U[ span + j ] - u; let saved = 0.0; for ( let r = 0; r < j; ++ r ) { const rv = right[ r + 1 ]; const lv = left[ j - r ]; ndu[ j ][ r ] = rv + lv; const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ]; ndu[ r ][ j ] = saved + rv * temp; saved = lv * temp; } ndu[ j ][ j ] = saved; } for ( let j = 0; j <= p; ++ j ) { ders[ 0 ][ j ] = ndu[ j ][ p ]; } for ( let r = 0; r <= p; ++ r ) { let s1 = 0; let s2 = 1; const a = []; for ( let i = 0; i <= p; ++ i ) { a[ i ] = zeroArr.slice( 0 ); } a[ 0 ][ 0 ] = 1.0; for ( let k = 1; k <= n; ++ k ) { let d = 0.0; const rk = r - k; const pk = p - k; if ( r >= k ) { a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ]; d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ]; } const j1 = ( rk >= - 1 ) ? 1 : - rk; const j2 = ( r - 1 <= pk ) ? k - 1 : p - r; for ( let j = j1; j <= j2; ++ j ) { a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ]; d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ]; } if ( r <= pk ) { a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ]; d += a[ s2 ][ k ] * ndu[ r ][ pk ]; } ders[ k ][ r ] = d; const j = s1; s1 = s2; s2 = j; } } let r = p; for ( let k = 1; k <= n; ++ k ) { for ( let j = 0; j <= p; ++ j ) { ders[ k ][ j ] *= r; } r *= p - k; } return ders; } /* Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2. p : degree U : knot vector P : control points u : Parametric points nd : number of derivatives returns array[d+1] with derivatives */ function calcBSplineDerivatives( p, U, P, u, nd ) { const du = nd < p ? nd : p; const CK = []; const span = findSpan( p, u, U ); const nders = calcBasisFunctionDerivatives( span, u, p, du, U ); const Pw = []; for ( let i = 0; i < P.length; ++ i ) { const point = P[ i ].clone(); const w = point.w; point.x *= w; point.y *= w; point.z *= w; Pw[ i ] = point; } for ( let k = 0; k <= du; ++ k ) { const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] ); for ( let j = 1; j <= p; ++ j ) { point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) ); } CK[ k ] = point; } for ( let k = du + 1; k <= nd + 1; ++ k ) { CK[ k ] = new three__WEBPACK_IMPORTED_MODULE_0__.Vector4( 0, 0, 0 ); } return CK; } /* Calculate "K over I" returns k!/(i!(k-i)!) */ function calcKoverI( k, i ) { let nom = 1; for ( let j = 2; j <= k; ++ j ) { nom *= j; } let denom = 1; for ( let j = 2; j <= i; ++ j ) { denom *= j; } for ( let j = 2; j <= k - i; ++ j ) { denom *= j; } return nom / denom; } /* Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2. Pders : result of function calcBSplineDerivatives returns array with derivatives for rational curve. */ function calcRationalCurveDerivatives( Pders ) { const nd = Pders.length; const Aders = []; const wders = []; for ( let i = 0; i < nd; ++ i ) { const point = Pders[ i ]; Aders[ i ] = new three__WEBPACK_IMPORTED_MODULE_0__.Vector3( point.x, point.y, point.z ); wders[ i ] = point.w; } const CK = []; for ( let k = 0; k < nd; ++ k ) { const v = Aders[ k ].clone(); for ( let i = 1; i <= k; ++ i ) { v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) ); } CK[ k ] = v.divideScalar( wders[ 0 ] ); } return CK; } /* Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2. p : degree U : knot vector P : control points in homogeneous space u : parametric points nd : number of derivatives returns array with derivatives. */ function calcNURBSDerivatives( p, U, P, u, nd ) { const Pders = calcBSplineDerivatives( p, U, P, u, nd ); return calcRationalCurveDerivatives( Pders ); } /* Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3. p, q : degrees of B-Spline surface U, V : knot vectors P : control points (x, y, z, w) u, v : parametric values returns point for given (u, v) */ function calcSurfacePoint( p, q, U, V, P, u, v, target ) { const uspan = findSpan( p, u, U ); const vspan = findSpan( q, v, V ); const Nu = calcBasisFunctions( uspan, u, p, U ); const Nv = calcBasisFunctions( vspan, v, q, V ); const temp = []; for ( let l = 0; l <= q; ++ l ) { temp[ l ] = new three__WEBPACK_IMPORTED_MODULE_0__.Vector4( 0, 0, 0, 0 ); for ( let k = 0; k <= p; ++ k ) { const point = P[ uspan - p + k ][ vspan - q + l ].clone(); const w = point.w; point.x *= w; point.y *= w; point.z *= w; temp[ l ].add( point.multiplyScalar( Nu[ k ] ) ); } } const Sw = new three__WEBPACK_IMPORTED_MODULE_0__.Vector4( 0, 0, 0, 0 ); for ( let l = 0; l <= q; ++ l ) { Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) ); } Sw.divideScalar( Sw.w ); target.set( Sw.x, Sw.y, Sw.z ); } /* Calculate rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3. p, q, r : degrees of B-Splinevolume U, V, W : knot vectors P : control points (x, y, z, w) u, v, w : parametric values returns point for given (u, v, w) */ function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) { const uspan = findSpan( p, u, U ); const vspan = findSpan( q, v, V ); const wspan = findSpan( r, w, W ); const Nu = calcBasisFunctions( uspan, u, p, U ); const Nv = calcBasisFunctions( vspan, v, q, V ); const Nw = calcBasisFunctions( wspan, w, r, W ); const temp = []; for ( let m = 0; m <= r; ++ m ) { temp[ m ] = []; for ( let l = 0; l <= q; ++ l ) { temp[ m ][ l ] = new three__WEBPACK_IMPORTED_MODULE_0__.Vector4( 0, 0, 0, 0 ); for ( let k = 0; k <= p; ++ k ) { const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone(); const w = point.w; point.x *= w; point.y *= w; point.z *= w; temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) ); } } } const Sw = new three__WEBPACK_IMPORTED_MODULE_0__.Vector4( 0, 0, 0, 0 ); for ( let m = 0; m <= r; ++ m ) { for ( let l = 0; l <= q; ++ l ) { Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) ); } } Sw.divideScalar( Sw.w ); target.set( Sw.x, Sw.y, Sw.z ); } /***/ }), /***/ "./node_modules/three/examples/jsm/libs/fflate.module.js": /*!***************************************************************!*\ !*** ./node_modules/three/examples/jsm/libs/fflate.module.js ***! \***************************************************************/ /***/ ((__unused_webpack___webpack_module__, __webpack_exports__, __webpack_require__) => { "use strict"; __webpack_require__.r(__webpack_exports__); /* harmony export */ __webpack_require__.d(__webpack_exports__, { /* harmony export */ AsyncCompress: () => (/* binding */ AsyncGzip), /* harmony export */ AsyncDecompress: () => (/* binding */ AsyncDecompress), /* harmony export */ AsyncDeflate: () => (/* binding */ AsyncDeflate), /* harmony export */ AsyncGunzip: () => (/* binding */ AsyncGunzip), /* harmony export */ AsyncGzip: () => (/* binding */ AsyncGzip), /* harmony export */ AsyncInflate: () => (/* binding */ AsyncInflate), /* harmony export */ AsyncUnzipInflate: () => (/* binding */ AsyncUnzipInflate), /* harmony export */ AsyncUnzlib: () => (/* binding */ AsyncUnzlib), /* harmony export */ AsyncZipDeflate: () => (/* binding */ AsyncZipDeflate), /* harmony export */ AsyncZlib: () => (/* binding */ AsyncZlib), /* harmony export */ Compress: () => (/* binding */ Gzip), /* harmony export */ DecodeUTF8: () => (/* binding */ DecodeUTF8), /* harmony export */ Decompress: () => (/* binding */ Decompress), /* harmony export */ Deflate: () => (/* binding */ Deflate), /* harmony export */ EncodeUTF8: () => (/* binding */ EncodeUTF8), /* harmony export */ FlateErrorCode: () => (/* binding */ FlateErrorCode), /* harmony export */ Gunzip: () => (/* binding */ Gunzip), /* harmony export */ Gzip: () => (/* binding */ Gzip), /* harmony export */ Inflate: () => (/* binding */ Inflate), /* harmony export */ Unzip: () => (/* binding */ Unzip), /* harmony export */ UnzipInflate: () => (/* binding */ UnzipInflate), /* harmony export */ UnzipPassThrough: () => (/* binding */ UnzipPassThrough), /* harmony export */ Unzlib: () => (/* binding */ Unzlib), /* harmony export */ Zip: () => (/* binding */ Zip), /* harmony export */ ZipDeflate: () => (/* binding */ ZipDeflate), /* harmony export */ ZipPassThrough: () => (/* binding */ ZipPassThrough), /* harmony export */ Zlib: () => (/* binding */ Zlib), /* harmony export */ compress: () => (/* binding */ gzip), /* harmony export */ compressSync: () => (/* binding */ gzipSync), /* harmony export */ decompress: () => (/* binding */ decompress), /* harmony export */ decompressSync: () => (/* binding */ decompressSync), /* harmony export */ deflate: () => (/* binding */ deflate), /* harmony export */ deflateSync: () => (/* binding */ deflateSync), /* harmony export */ gunzip: () => (/* binding */ gunzip), /* harmony export */ gunzipSync: () => (/* binding */ gunzipSync), /* harmony export */ gzip: () => (/* binding */ gzip), /* harmony export */ gzipSync: () => (/* binding */ gzipSync), /* harmony export */ inflate: () => (/* binding */ inflate), /* harmony export */ inflateSync: () => (/* binding */ inflateSync), /* harmony export */ strFromU8: () => (/* binding */ strFromU8), /* harmony export */ strToU8: () => (/* binding */ strToU8), /* harmony export */ unzip: () => (/* binding */ unzip), /* harmony export */ unzipSync: () => (/* binding */ unzipSync), /* harmony export */ unzlib: () => (/* binding */ unzlib), /* harmony export */ unzlibSync: () => (/* binding */ unzlibSync), /* harmony export */ zip: () => (/* binding */ zip), /* harmony export */ zipSync: () => (/* binding */ zipSync), /* harmony export */ zlib: () => (/* binding */ zlib), /* harmony export */ zlibSync: () => (/* binding */ zlibSync) /* harmony export */ }); /*! fflate - fast JavaScript compression/decompression <https://101arrowz.github.io/fflate> Licensed under MIT. https://github.com/101arrowz/fflate/blob/master/LICENSE version 0.8.2 */ // DEFLATE is a complex format; to read this code, you should probably check the RFC first: // https://tools.ietf.org/html/rfc1951 // You may also wish to take a look at the guide I made about this program: // https://gist.github.com/101arrowz/253f31eb5abc3d9275ab943003ffecad // Some of the following code is similar to that of UZIP.js: // https://github.com/photopea/UZIP.js // However, the vast majority of the codebase has diverged from UZIP.js to increase performance and reduce bundle size. // Sometimes 0 will appear where -1 would be more appropriate. This is because using a uint // is better for memory in most engines (I *think*). var ch2 = {}; var wk = (function (c, id, msg, transfer, cb) { var w = new Worker(ch2[id] || (ch2[id] = URL.createObjectURL(new Blob([ c + ';addEventListener("error",function(e){e=e.error;postMessage({$e$:[e.message,e.code,e.stack]})})' ], { type: 'text/javascript' })))); w.onmessage = function (e) { var d = e.data, ed = d.$e$; if (ed) { var err = new Error(ed[0]); err['code'] = ed[1]; err.stack = ed[2]; cb(err, null); } else cb(null, d); }; w.postMessage(msg, transfer); return w; }); // aliases for shorter compressed code (most minifers don't do this) var u8 = Uint8Array, u16 = Uint16Array, i32 = Int32Array; // fixed length extra bits var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]); // fixed distance extra bits var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]); // code length index map var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]); // get base, reverse index map from extra bits var freb = function (eb, start) { var b = new u16(31); for (var i = 0; i < 31; ++i) { b[i] = start += 1 << eb[i - 1]; } // numbers here are at max 18 bits var r = new i32(b[30]); for (var i = 1; i < 30; ++i) { for (var j = b[i]; j < b[i + 1]; ++j) { r[j] = ((j - b[i]) << 5) | i; } } return { b: b, r: r }; }; var _a = freb(fleb, 2), fl = _a.b, revfl = _a.r; // we can ignore the fact that the other numbers are wrong; they never happen anyway fl[28] = 258, revfl[258] = 28; var _b = freb(fdeb, 0), fd = _b.b, revfd = _b.r; // map of value to reverse (assuming 16 bits) var rev = new u16(32768); for (var i = 0; i < 32768; ++i) { // reverse table algorithm from SO var x = ((i & 0xAAAA) >> 1) | ((i & 0x5555) << 1); x = ((x & 0xCCCC) >> 2) | ((x & 0x3333) << 2); x = ((x & 0xF0F0) >> 4) | ((x & 0x0F0F) << 4); rev[i] = (((x & 0xFF00) >> 8) | ((x & 0x00FF) << 8)) >> 1; } // create huffman tree from u8 "map": index -> code length for code index // mb (max bits) must be at most 15 // TODO: optimize/split up? var hMap = (function (cd, mb, r) { var s = cd.length; // index var i = 0; // u16 "map": index -> # of codes with bit length = index var l = new u16(mb); // length of cd must be 288 (total # of codes) for (; i < s; ++i) { if (cd[i]) ++l[cd[i] - 1]; } // u16 "map": index -> minimum code for bit length = index var le = new u16(mb); for (i = 1; i < mb; ++i) { le[i] = (le[i - 1] + l[i - 1]) << 1; } var co; if (r) { // u16 "map": index -> number of actual bits, symbol for code co = new u16(1 << mb); // bits to remove for reverser var rvb = 15 - mb; for (i = 0; i < s; ++i) { // ignore 0 lengths if (cd[i]) { // num encoding both symbol and bits read var sv = (i << 4) | cd[i]; // free bits var r_1 = mb - cd[i]; // start value var v = le[cd[i] - 1]++ << r_1; // m is end value for (var m = v | ((1 << r_1) - 1); v <= m; ++v) { // every 16 bit value starting with the code yields the same result co[rev[v] >> rvb] = sv; } } } } else { co = new u16(s); for (i = 0; i < s; ++i) { if (cd[i]) { co[i] = rev[le[cd[i] - 1]++] >> (15 - cd[i]); } } } return co; }); // fixed length tree var flt = new u8(288); for (var i = 0; i < 144; ++i) flt[i] = 8; for (var i = 144; i < 256; ++i) flt[i] = 9; for (var i = 256; i < 280; ++i) flt[i] = 7; for (var i = 280; i < 288; ++i) flt[i] = 8; // fixed distance tree var fdt = new u8(32); for (var i = 0; i < 32; ++i) fdt[i] = 5; // fixed length map var flm = /*#__PURE__*/ hMap(flt, 9, 0), flrm = /*#__PURE__*/ hMap(flt, 9, 1); // fixed distance map var fdm = /*#__PURE__*/ hMap(fdt, 5, 0), fdrm = /*#__PURE__*/ hMap(fdt, 5, 1); // find max of array var max = function (a) { var m = a[0]; for (var i = 1; i < a.length; ++i) { if (a[i] > m) m = a[i]; } return m; }; // read d, starting at bit p and mask with m var bits = function (d, p, m) { var o = (p / 8) | 0; return ((d[o] | (d[o + 1] << 8)) >> (p & 7)) & m; }; // read d, starting at bit p continuing for at least 16 bits var bits16 = function (d, p) { var o = (p / 8) | 0; return ((d[o] | (d[o + 1] << 8) | (d[o + 2] << 16)) >> (p & 7)); }; // get end of byte var shft = function (p) { return ((p + 7) / 8) | 0; }; // typed array slice - allows garbage collector to free original reference, // while being more compatible than .slice var slc = function (v, s, e) { if (s == null || s < 0) s = 0; if (e == null || e > v.length) e = v.length; // can't use .constructor in case user-supplied return new u8(v.subarray(s, e)); }; /** * Codes for errors generated within this library */ var FlateErrorCode = { UnexpectedEOF: 0, InvalidBlockType: 1, InvalidLengthLiteral: 2, InvalidDistance: 3, StreamFinished: 4, NoStreamHandler: 5, InvalidHeader: 6, NoCallback: 7, InvalidUTF8: 8, ExtraFieldTooLong: 9, InvalidDate: 10, FilenameTooLong: 11, StreamFinishing: 12, InvalidZipData: 13, UnknownCompressionMethod: 14 }; // error codes var ec = [ 'unexpected EOF', 'invalid block type', 'invalid length/literal', 'invalid distance', 'stream finished', 'no stream handler', , 'no callback', 'invalid UTF-8 data', 'extra field too long', 'date not in range 1980-2099', 'filename too long', 'stream finishing', 'invalid zip data' // determined by unknown compression method ]; ; var err = function (ind, msg, nt) { var e = new Error(msg || ec[ind]); e.code = ind; if (Error.captureStackTrace) Error.captureStackTrace(e, err); if (!nt) throw e; return e; }; // expands raw DEFLATE data var inflt = function (dat, st, buf, dict) { // source length dict length var sl = dat.length, dl = dict ? dict.length : 0; if (!sl || st.f && !st.l) return buf || new u8(0); var noBuf = !buf; // have to estimate size var resize = noBuf || st.i != 2; // no state var noSt = st.i; // Assumes roughly 33% compression ratio average if (noBuf) buf = new u8(sl * 3); // ensure buffer can fit at least l elements var cbuf = function (l) { var bl = buf.length; // need to increase size to fit if (l > bl) { // Double or set to necessary, whichever is greater var nbuf = new u8(Math.max(bl * 2, l)); nbuf.set(buf); buf = nbuf; } }; // last chunk bitpos bytes var final = st.f || 0, pos = st.p || 0, bt = st.b || 0, lm = st.l, dm = st.d, lbt = st.m, dbt = st.n; // total bits var tbts = sl * 8; do { if (!lm) { // BFINAL - this is only 1 when last chunk is next final = bits(dat, pos, 1); // type: 0 = no compression, 1 = fixed huffman, 2 = dynamic huffman var type = bits(dat, pos + 1, 3); pos += 3; if (!type) { // go to end of byte boundary var s = shft(pos) + 4, l = dat[s - 4] | (dat[s - 3] << 8), t = s + l; if (t > sl) { if (noSt) err(0); break; } // ensure size if (resize) cbuf(bt + l); // Copy over uncompressed data buf.set(dat.subarray(s, t), bt); // Get new bitpos, update byte count st.b = bt += l, st.p = pos = t * 8, st.f = final; continue; } else if (type == 1) lm = flrm, dm = fdrm, lbt = 9, dbt = 5; else if (type == 2) { // literal lengths var hLit = bits(dat, pos, 31) + 257, hcLen = bits(dat, pos + 10, 15) + 4; var tl = hLit + bits(dat, pos + 5, 31) + 1; pos += 14; // length+distance tree var ldt = new u8(tl); // code length tree var clt = new u8(19); for (var i = 0; i < hcLen; ++i) { // use index map to get real code clt[clim[i]] = bits(dat, pos + i * 3, 7); } pos += hcLen * 3; // code lengths bits var clb = max(clt), clbmsk = (1 << clb) - 1; // code lengths map var clm = hMap(clt, clb, 1); for (var i = 0; i < tl;) { var r = clm[bits(dat, pos, clbmsk)]; // bits read pos += r & 15; // symbol var s = r >> 4; // code length to copy if (s < 16) { ldt[i++] = s; } else { // copy count var c = 0, n = 0; if (s == 16) n = 3 + bits(dat, pos, 3), pos += 2, c = ldt[i - 1]; else if (s == 17) n = 3 + bits(dat, pos, 7), pos += 3; else if (s == 18) n = 11 + bits(dat, pos, 127), pos += 7; while (n--) ldt[i++] = c; } } // length tree distance tree var lt = ldt.subarray(0, hLit), dt = ldt.subarray(hLit); // max length bits lbt = max(lt); // max dist bits dbt = max(dt); lm = hMap(lt, lbt, 1); dm = hMap(dt, dbt, 1); } else err(1); if (pos > tbts) { if (noSt) err(0); break; } } // Make sure the buffer can hold this + the largest possible addition // Maximum chunk size (practically, theoretically infinite) is 2^17 if (resize) cbuf(bt + 131072); var lms = (1 << lbt) - 1, dms = (1 << dbt) - 1; var lpos = pos; for (;; lpos = pos) { // bits read, code var c = lm[bits16(dat, pos) & lms], sym = c >> 4; pos += c & 15; if (pos > tbts) { if (noSt) err(0); break; } if (!c) err(2); if (sym < 256) buf[bt++] = sym; else if (sym == 256) { lpos = pos, lm = null; break; } else { var add = sym - 254; // no extra bits needed if less if (sym > 264) { // index var i = sym - 257, b = fleb[i]; add = bits(dat, pos, (1 << b) - 1) + fl[i]; pos += b; } // dist var d = dm[bits16(dat, pos) & dms], dsym = d >> 4; if (!d) err(3); pos += d & 15; var dt = fd[dsym]; if (dsym > 3) { var b = fdeb[dsym]; dt += bits16(dat, pos) & (1 << b) - 1, pos += b; } if (pos > tbts) { if (noSt) err(0); break; } if (resize) cbuf(bt + 131072); var end = bt + add; if (bt < dt) { var shift = dl - dt, dend = Math.min(dt, end); if (shift + bt < 0) err(3); for (; bt < dend; ++bt) buf[bt] = dict[shift + bt]; } for (; bt < end; ++bt) buf[bt] = buf[bt - dt]; } } st.l = lm, st.p = lpos, st.b = bt, st.f = final; if (lm) final = 1, st.m = lbt, st.d = dm, st.n = dbt; } while (!final); // don't reallocate for streams or user buffers return bt != buf.length && noBuf ? slc(buf, 0, bt) : buf.subarray(0, bt); }; // starting at p, write the minimum number of bits that can hold v to d var wbits = function (d, p, v) { v <<= p & 7; var o = (p / 8) | 0; d[o] |= v; d[o + 1] |= v >> 8; }; // starting at p, write the minimum number of bits (>8) that can hold v to d var wbits16 = function (d, p, v) { v <<= p & 7; var o = (p / 8) | 0; d[o] |= v; d[o + 1] |= v >> 8; d[o + 2] |= v >> 16; }; // creates code lengths from a frequency table var hTree = function (d, mb) { // Need extra info to make a tree var t = []; for (var i = 0; i < d.length; ++i) { if (d[i]) t.push({ s: i, f: d[i] }); } var s = t.length; var t2 = t.slice(); if (!s) return { t: et, l: 0 }; if (s == 1) { var v = new u8(t[0].s + 1); v[t[0].s] = 1; return { t: v, l: 1 }; } t.sort(function (a, b) { return a.f - b.f; }); // after i2 reaches last ind, will be stopped // freq must be greater than largest possible number of symbols t.push({ s: -1, f: 25001 }); var l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2; t[0] = { s: -1, f: l.f + r.f, l: l, r: r }; // efficient algorithm from UZIP.js // i0 is lookbehind, i2 is lookahead - after processing two low-freq // symbols that combined have high freq, will start processing i2 (high-freq, // non-composite) symbols instead // see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/ while (i1 != s - 1) { l = t[t[i0].f < t[i2].f ? i0++ : i2++]; r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++]; t[i1++] = { s: -1, f: l.f + r.f, l: l, r: r }; } var maxSym = t2[0].s; for (var i = 1; i < s; ++i) { if (t2[i].s > maxSym) maxSym = t2[i].s; } // code lengths var tr = new u16(maxSym + 1); // max bits in tree var mbt = ln(t[i1 - 1], tr, 0); if (mbt > mb) { // more algorithms from UZIP.js // TODO: find out how this code works (debt) // ind debt var i = 0, dt = 0; // left cost var lft = mbt - mb, cst = 1 << lft; t2.sort(function (a, b) { return tr[b.s] - tr[a.s] || a.f - b.f; }); for (; i < s; ++i) { var i2_1 = t2[i].s; if (tr[i2_1] > mb) { dt += cst - (1 << (mbt - tr[i2_1])); tr[i2_1] = mb; } else break; } dt >>= lft; while (dt > 0) { var i2_2 = t2[i].s; if (tr[i2_2] < mb) dt -= 1 << (mb - tr[i2_2]++ - 1); else ++i; } for (; i >= 0 && dt; --i) { var i2_3 = t2[i].s; if (tr[i2_3] == mb) { --tr[i2_3]; ++dt; } } mbt = mb; } return { t: new u8(tr), l: mbt }; }; // get the max length and assign length codes var ln = function (n, l, d) { return n.s == -1 ? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1)) : (l[n.s] = d); }; // length codes generation var lc = function (c) { var s = c.length; // Note that the semicolon was intentional while (s && !c[--s]) ; var cl = new u16(++s); // ind num streak var cli = 0, cln = c[0], cls = 1; var w = function (v) { cl[cli++] = v; }; for (var i = 1; i <= s; ++i) { if (c[i] == cln && i != s) ++cls; else { if (!cln && cls > 2) { for (; cls > 138; cls -= 138) w(32754); if (cls > 2) { w(cls > 10 ? ((cls - 11) << 5) | 28690 : ((cls - 3) << 5) | 12305); cls = 0; } } else if (cls > 3) { w(cln), --cls; for (; cls > 6; cls -= 6) w(8304); if (cls > 2) w(((cls - 3) << 5) | 8208), cls = 0; } while (cls--) w(cln); cls = 1; cln = c[i]; } } return { c: cl.subarray(0, cli), n: s }; }; // calculate the length of output from tree, code lengths var clen = function (cf, cl) { var l = 0; for (var i = 0; i < cl.length; ++i) l += cf[i] * cl[i]; return l; }; // writes a fixed block // returns the new bit pos var wfblk = function (out, pos, dat) { // no need to write 00 as type: TypedArray defaults to 0 var s = dat.length; var o = shft(pos + 2); out[o] = s & 255; out[o + 1] = s >> 8; out[o + 2] = out[o] ^ 255; out[o + 3] = out[o + 1] ^ 255; for (var i = 0; i < s; ++i) out[o + i + 4] = dat[i]; return (o + 4 + s) * 8; }; // writes a block var wblk = function (dat, out, final, syms, lf, df, eb, li, bs, bl, p) { wbits(out, p++, final); ++lf[256]; var _a = hTree(lf, 15), dlt = _a.t, mlb = _a.l; var _b = hTree(df, 15), ddt = _b.t, mdb = _b.l; var _c = lc(dlt), lclt = _c.c, nlc = _c.n; var _d = lc(ddt), lcdt = _d.c, ndc = _d.n; var lcfreq = new u16(19); for (var i = 0; i < lclt.length; ++i) ++lcfreq[lclt[i] & 31]; for (var i = 0; i < lcdt.length; ++i) ++lcfreq[lcdt[i] & 31]; var _e = hTree(lcfreq, 7), lct = _e.t, mlcb = _e.l; var nlcc = 19; for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc) ; var flen = (bl + 5) << 3; var ftlen = clen(lf, flt) + clen(df, fdt) + eb; var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + 2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]; if (bs >= 0 && flen <= ftlen && flen <= dtlen) return wfblk(out, p, dat.subarray(bs, bs + bl)); var lm, ll, dm, dl; wbits(out, p, 1 + (dtlen < ftlen)), p += 2; if (dtlen < ftlen) { lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt; var llm = hMap(lct, mlcb, 0); wbits(out, p, nlc - 257); wbits(out, p + 5, ndc - 1); wbits(out, p + 10, nlcc - 4); p += 14; for (var i = 0; i < nlcc; ++i) wbits(out, p + 3 * i, lct[clim[i]]); p += 3 * nlcc; var lcts = [lclt, lcdt]; for (var it = 0; it < 2; ++it) { var clct = lcts[it]; for (var i = 0; i < clct.length; ++i) { var len = clct[i] & 31; wbits(out, p, llm[len]), p += lct[len]; if (len > 15) wbits(out, p, (clct[i] >> 5) & 127), p += clct[i] >> 12; } } } else { lm = flm, ll = flt, dm = fdm, dl = fdt; } for (var i = 0; i < li; ++i) { var sym = syms[i]; if (sym > 255) { var len = (sym >> 18) & 31; wbits16(out, p, lm[len + 257]), p += ll[len + 257]; if (len > 7) wbits(out, p, (sym >> 23) & 31), p += fleb[len]; var dst = sym & 31; wbits16(out, p, dm[dst]), p += dl[dst]; if (dst > 3) wbits16(out, p, (sym >> 5) & 8191), p += fdeb[dst]; } else { wbits16(out, p, lm[sym]), p += ll[sym]; } } wbits16(out, p, lm[256]); return p + ll[256]; }; // deflate options (nice << 13) | chain var deo = /*#__PURE__*/ new i32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]); // empty var et = /*#__PURE__*/ new u8(0); // compresses data into a raw DEFLATE buffer var dflt = function (dat, lvl, plvl, pre, post, st) { var s = st.z || dat.length; var o = new u8(pre + s + 5 * (1 + Math.ceil(s / 7000)) + post); // writing to this writes to the output buffer var w = o.subarray(pre, o.length - post); var lst = st.l; var pos = (st.r || 0) & 7; if (lvl) { if (pos) w[0] = st.r >> 3; var opt = deo[lvl - 1]; var n = opt >> 13, c = opt & 8191; var msk_1 = (1 << plvl) - 1; // prev 2-byte val map curr 2-byte val map var prev = st.p || new u16(32768), head = st.h || new u16(msk_1 + 1); var bs1_1 = Math.ceil(plvl / 3), bs2_1 = 2 * bs1_1; var hsh = function (i) { return (dat[i] ^ (dat[i + 1] << bs1_1) ^ (dat[i + 2] << bs2_1)) & msk_1; }; // 24576 is an arbitrary number of maximum symbols per block // 424 buffer for last block var syms = new i32(25000); // length/literal freq distance freq var lf = new u16(288), df = new u16(32); // l/lcnt exbits index l/lind waitdx blkpos var lc_1 = 0, eb = 0, i = st.i || 0, li = 0, wi = st.w || 0, bs = 0; for (; i + 2 < s; ++i) { // hash value var hv = hsh(i); // index mod 32768 previous index mod var imod = i & 32767, pimod = head[hv]; prev[imod] = pimod; head[hv] = imod; // We always should modify head and prev, but only add symbols if // this data is not yet processed ("wait" for wait index) if (wi <= i) { // bytes remaining var rem = s - i; if ((lc_1 > 7000 || li > 24576) && (rem > 423 || !lst)) { pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos); li = lc_1 = eb = 0, bs = i; for (var j = 0; j < 286; ++j) lf[j] = 0; for (var j = 0; j < 30; ++j) df[j] = 0; } // len dist chain var l = 2, d = 0, ch_1 = c, dif = imod - pimod & 32767; if (rem > 2 && hv == hsh(i - dif)) { var maxn = Math.min(n, rem) - 1; var maxd = Math.min(32767, i); // max possible length // not capped at dif because decompressors implement "rolling" index population var ml = Math.min(258, rem); while (dif <= maxd && --ch_1 && imod != pimod) { if (dat[i + l] == dat[i + l - dif]) { var nl = 0; for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl) ; if (nl > l) { l = nl, d = dif; // break out early when we reach "nice" (we are satisfied enough) if (nl > maxn) break; // now, find the rarest 2-byte sequence within this // length of literals and search for that instead. // Much faster than just using the start var mmd = Math.min(dif, nl - 2); var md = 0; for (var j = 0; j < mmd; ++j) { var ti = i - dif + j & 32767; var pti = prev[ti]; var cd = ti - pti & 32767; if (cd > md) md = cd, pimod = ti; } } } // check the previous match imod = pimod, pimod = prev[imod]; dif += imod - pimod & 32767; } } // d will be nonzero only when a match was found if (d) { // store both dist and len data in one int32 // Make sure this is recognized as a len/dist with 28th bit (2^28) syms[li++] = 268435456 | (revfl[l] << 18) | revfd[d]; var lin = revfl[l] & 31, din = revfd[d] & 31; eb += fleb[lin] + fdeb[din]; ++lf[257 + lin]; ++df[din]; wi = i + l; ++lc_1; } else { syms[li++] = dat[i]; ++lf[dat[i]]; } } } for (i = Math.max(i, wi); i < s; ++i) { syms[li++] = dat[i]; ++lf[dat[i]]; } pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos); if (!lst) { st.r = (pos & 7) | w[(pos / 8) | 0] << 3; // shft(pos) now 1 less if pos & 7 != 0 pos -= 7; st.h = head, st.p = prev, st.i = i, st.w = wi; } } else { for (var i = st.w || 0; i < s + lst; i += 65535) { // end var e = i + 65535; if (e >= s) { // write final block w[(pos / 8) | 0] = lst; e = s; } pos = wfblk(w, pos + 1, dat.subarray(i, e)); } st.i = s; } return slc(o, 0, pre + shft(pos) + post); }; // CRC32 table var crct = /*#__PURE__*/ (function () { var t = new Int32Array(256); for (var i = 0; i < 256; ++i) { var c = i, k = 9; while (--k) c = ((c & 1) && -306674912) ^ (c >>> 1); t[i] = c; } return t; })(); // CRC32 var crc = function () { var c = -1; return { p: function (d) { // closures have awful performance var cr = c; for (var i = 0; i < d.length; ++i) cr = crct[(cr & 255) ^ d[i]] ^ (cr >>> 8); c = cr; }, d: function () { return ~c; } }; }; // Adler32 var adler = function () { var a = 1, b = 0; return { p: function (d) { // closures have awful performance var n = a, m = b; var l = d.length | 0; for (var i = 0; i != l;) { var e = Math.min(i + 2655, l); for (; i < e; ++i) m += n += d[i]; n = (n & 65535) + 15 * (n >> 16), m = (m & 65535) + 15 * (m >> 16); } a = n, b = m; }, d: function () { a %= 65521, b %= 65521; return (a & 255) << 24 | (a & 0xFF00) << 8 | (b & 255) << 8 | (b >> 8); } }; }; ; // deflate with opts var dopt = function (dat, opt, pre, post, st) { if (!st) { st = { l: 1 }; if (opt.dictionary) { var dict = opt.dictionary.subarray(-32768); var newDat = new u8(dict.length + dat.length); newDat.set(dict); newDat.set(dat, dict.length); dat = newDat; st.w = dict.length; } } return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? (st.l ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : 20) : (12 + opt.mem), pre, post, st); }; // Walmart object spread var mrg = function (a, b) { var o = {}; for (var k in a) o[k] = a[k]; for (var k in b) o[k] = b[k]; return o; }; // worker clone // This is possibly the craziest part of the entire codebase, despite how simple it may seem. // The only parameter to this function is a closure that returns an array of variables outside of the function scope. // We're going to try to figure out the variable names used in the closure as strings because that is crucial for workerization. // We will return an object mapping of true variable name to value (basically, the current scope as a JS object). // The reason we can't just use the original variable names is minifiers mangling the toplevel scope. // This took me three weeks to figure out how to do. var wcln = function (fn, fnStr, td) { var dt = fn(); var st = fn.toString(); var ks = st.slice(st.indexOf('[') + 1, st.lastIndexOf(']')).replace(/\s+/g, '').split(','); for (var i = 0; i < dt.length; ++i) { var v = dt[i], k = ks[i]; if (typeof v == 'function') { fnStr += ';' + k + '='; var st_1 = v.toString(); if (v.prototype) { // for global objects if (st_1.indexOf('[native code]') != -1) { var spInd = st_1.indexOf(' ', 8) + 1; fnStr += st_1.slice(spInd, st_1.indexOf('(', spInd)); } else { fnStr += st_1; for (var t in v.prototype) fnStr += ';' + k + '.prototype.' + t + '=' + v.prototype[t].toString(); } } else fnStr += st_1; } else td[k] = v; } return fnStr; }; var ch = []; // clone bufs var cbfs = function (v) { var tl = []; for (var k in v) { if (v[k].buffer) { tl.push((v[k] = new v[k].constructor(v[k])).buffer); } } return tl; }; // use a worker to execute code var wrkr = function (fns, init, id, cb) { if (!ch[id]) { var fnStr = '', td_1 = {}, m = fns.length - 1; for (var i = 0; i < m; ++i) fnStr = wcln(fns[i], fnStr, td_1); ch[id] = { c: wcln(fns[m], fnStr, td_1), e: td_1 }; } var td = mrg({}, ch[id].e); return wk(ch[id].c + ';onmessage=function(e){for(var k in e.data)self[k]=e.data[k];onmessage=' + init.toString() + '}', id, td, cbfs(td), cb); }; // base async inflate fn var bInflt = function () { return [u8, u16, i32, fleb, fdeb, clim, fl, fd, flrm, fdrm, rev, ec, hMap, max, bits, bits16, shft, slc, err, inflt, inflateSync, pbf, gopt]; }; var bDflt = function () { return [u8, u16, i32, fleb, fdeb, clim, revfl, revfd, flm, flt, fdm, fdt, rev, deo, et, hMap, wbits, wbits16, hTree, ln, lc, clen, wfblk, wblk, shft, slc, dflt, dopt, deflateSync, pbf]; }; // gzip extra var gze = function () { return [gzh, gzhl, wbytes, crc, crct]; }; // gunzip extra var guze = function () { return [gzs, gzl]; }; // zlib extra var zle = function () { return [zlh, wbytes, adler]; }; // unzlib extra var zule = function () { return [zls]; }; // post buf var pbf = function (msg) { return postMessage(msg, [msg.buffer]); }; // get opts var gopt = function (o) { return o && { out: o