UNPKG

aetherlight-sdk

Version:

Γ†therLight Application Integration SDK - Add voice control to any application with natural language function calling

748 lines (578 loc) β€’ 28.7 kB
# Γ†therLight Network Contribution Architecture **VERSION:** 1.0 **DATE:** 2025-10-07 **STATUS:** SDK Design - Network Effects Layer **CLASSIFICATION:** πŸ” INTERNAL (Technical architecture for network learning) --- ## Executive Summary **DESIGN DECISION:** Customer applications become learning centers, patterns flow bidirectionally **WHY:** Network effects (Metcalfe's Law) create exponential value: N apps β†’ NΒ² intelligence **THE VISION:** When a customer integrates Γ†therLight SDK, their application doesn't just consume intelligenceβ€”it **contributes** intelligence. Their unique domain patterns, validated outcomes, and edge cases feed back into the neural network (with zero-knowledge encryption and full transparency). Future customers benefit from this collective knowledge, and the contributor earns reputation credits. **REASONING CHAIN:** 1. Customer integrates SDK (legal research platform) 2. SDK analyzes their codebase, suggests patterns (Architecture Advisor) 3. They implement suggestions, patterns prove successful (outcome tracking) 4. SDK asks: "Share this pattern with network? (encrypted, anonymous)" 5. Customer opts in β†’ pattern encrypted (double-layer: user key + node key) 6. Pattern published to Kademlia DHT (content-addressed, O(log N) discovery) 7. Future legal research platforms discover pattern (network search) 8. Contributor earns reputation credits (unlocks premium patterns) 9. Network intelligence compounds (100 apps β†’ 10,000 pattern interactions) **RESULT:** Self-reinforcing viral loop where every integration makes the network smarter. --- ## Network Architecture Overview ### Three-Layer Intelligence Network ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Layer 1: Local Intelligence (Customer Application) β”‚ β”‚ β€’ Customer's own patterns (100% private) β”‚ β”‚ β€’ Domain-specific knowledge (legal, medical, analytics) β”‚ β”‚ β€’ Custom rules and constraints β”‚ β”‚ β€’ Fast: <10ms pattern matching (local SQLite) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ↕ (opt-in) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Layer 2: Circle of Trust (5-20 trusted peers) β”‚ β”‚ β€’ Encrypted pattern sharing (Shamir 3-of-5 threshold) β”‚ β”‚ β€’ Industry consortium knowledge (e.g., 10 legal firms) β”‚ β”‚ β€’ Moderate speed: <100ms (DHT lookup within circle) β”‚ β”‚ β€’ Zero-knowledge: We can't decrypt, only route β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ↕ (opt-in) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Layer 3: Global Neural Network (All Γ†therLight Nodes) β”‚ β”‚ β€’ Anonymized patterns (no customer identifiers) β”‚ β”‚ β€’ Cross-domain learning (legal β†’ analytics β†’ medical) β”‚ β”‚ β€’ Slower: <500ms (O(log N) DHT discovery, N=100k nodes) β”‚ β”‚ β€’ Public good: Common patterns benefit all β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` **Key Principle:** Hierarchical opt-in. Customer controls which layer each pattern reaches. --- ## Pattern Contribution Workflow ### Step 1: Outcome Validation (Local) When customer uses SDK to implement a recommendation: ```typescript import { AetherlightCore } from '@aetherlight/sdk'; const core = new AetherlightCore({ domain: 'legal' }); // Customer implements Architecture Advisor recommendation const recommendation = await core.architectureAdvisor.analyze({ targetFunction: 'handleNonCompeteAgreement', includeTests: true }); // Customer implements recommendation in their code // ... (implementation) ... // SDK tracks outcome await core.trackOutcome({ patternId: recommendation.patternId, outcome: 'success', // or 'failure' metrics: { executionTime: '45ms', testsPassing: 12, codeQuality: 0.92 } }); ``` **Outcome Criteria for Contribution:** - Pattern must be used β‰₯3 times (not one-off) - Success rate β‰₯85% (validated outcomes) - Customer confirms: "This worked for us" - Chain of Thought reasoning present (DESIGN DECISION, WHY, REASONING CHAIN) --- ### Step 2: Anonymization & Encryption (Automatic) SDK automatically prepares pattern for network contribution: ```typescript // INTERNAL: SDK logic (customer doesn't see this) async function preparePatternForNetwork(pattern: Pattern, outcome: Outcome) { // 1. Strip customer identifiers const anonymized = { ...pattern, customerId: null, // Remove companyName: null, // Remove codeRepository: null, // Remove metadata: { ...pattern.metadata, domain: pattern.metadata.domain, // Keep (e.g., 'legal') jurisdiction: pattern.metadata.jurisdiction, // Keep (e.g., 'California') practiceArea: pattern.metadata.practiceArea, // Keep (e.g., 'employment-law') // Remove: customer-specific tags } }; // 2. Encrypt with double-layer const userKey = await getUserEncryptionKey(); // Customer's key const nodeKey = await getNodeEncryptionKey(); // Γ†therLight node key const encrypted = await encrypt( JSON.stringify(anonymized), { userKey, nodeKey } ); // 3. Add proof of validation return { patternHash: sha256(encrypted), encryptedPattern: encrypted, proofOfWork: { usageCount: outcome.usageCount, successRate: outcome.successRate, validatedBy: sha256(customerId), // One-way hash timestamp: Date.now() } }; } ``` **Anonymization Rules:** - βœ… Keep: Domain, jurisdiction, practice area, technology stack - βœ… Keep: Chain of Thought reasoning (WHY, REASONING CHAIN) - βœ… Keep: Performance metrics (execution time, success rate) - ❌ Remove: Customer name, company, repository URL, proprietary code - ❌ Remove: Customer-specific tags, internal references **Encryption Layers:** 1. **User Key:** Customer's encryption key (only they can decrypt) 2. **Node Key:** Γ†therLight DHT node key (enables routing without reading) 3. **Result:** Zero-knowledge (we route encrypted patterns, can't read contents) --- ### Step 3: Consent Prompt (User Control) SDK prompts customer before first contribution: ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Γ†therLight Network Contribution β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ Your pattern "Non-Compete Unenforceability (California)" β”‚ β”‚ has been validated (12 uses, 92% success rate). β”‚ β”‚ β”‚ β”‚ Contribute to Γ†therLight Network? β”‚ β”‚ β”‚ β”‚ βœ… What's shared: β”‚ β”‚ β€’ Domain: Legal (employment law) β”‚ β”‚ β€’ Jurisdiction: California β”‚ β”‚ β€’ Reasoning: Chain of Thought (anonymized) β”‚ β”‚ β€’ Performance: 45ms execution time β”‚ β”‚ β”‚ β”‚ ❌ What's NOT shared: β”‚ β”‚ β€’ Your company name or customer ID β”‚ β”‚ β€’ Your codebase or repository β”‚ β”‚ β€’ Proprietary implementation details β”‚ β”‚ β”‚ β”‚ Benefits: β”‚ β”‚ β€’ Earn 10 reputation credits (unlock premium patterns) β”‚ β”‚ β€’ Help 100+ other legal platforms β”‚ β”‚ β€’ Network learns from your edge cases β”‚ β”‚ β”‚ β”‚ [Contribute to Circle of Trust] (5 legal firms) β”‚ β”‚ [Contribute to Global Network] (all Γ†therLight nodes) β”‚ β”‚ [Keep Private] (local only) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` **Consent Levels:** 1. **Keep Private:** Pattern stays local (default for first 30 days) 2. **Circle of Trust:** Share with 5-20 trusted peers (Shamir encrypted) 3. **Global Network:** Share with all Γ†therLight nodes (anonymized, zero-knowledge) **User can revoke consent anytime:** ```typescript await core.revokeNetworkContribution('pattern-legal-001'); // Pattern removed from DHT within 24 hours (network propagation delay) ``` --- ### Step 4: DHT Publication (Kademlia Network) Pattern published to distributed hash table: ```typescript // INTERNAL: SDK publishes to DHT async function publishToDHT(preparedPattern: PreparedPattern) { const dht = new KademliaDHT({ bootstrapNodes: ['dht1.aetherlight.network', 'dht2.aetherlight.network'], replicationFactor: 20 // Store on 20 closest nodes (K=20) }); // 1. Calculate content address (SHA-256 hash) const patternId = sha256(preparedPattern.encryptedPattern); // 2. Find 20 closest nodes (XOR distance metric) const closestNodes = await dht.findClosestNodes(patternId, 20); // 3. Store encrypted pattern on all 20 nodes await Promise.all( closestNodes.map(node => dht.store(node, patternId, preparedPattern.encryptedPattern) ) ); // 4. Update hierarchical index (O(log log N) lookups) await updateRegionalIndex(patternId, { domain: preparedPattern.metadata.domain, jurisdiction: preparedPattern.metadata.jurisdiction }); return { patternId, storedOnNodes: closestNodes.length, reputationCredits: 10 }; } ``` **DHT Properties:** - **Content-Addressed:** Pattern ID = SHA-256(encrypted pattern) - **Replication:** K=20 nodes store each pattern (fault tolerance) - **Discovery:** O(log N) lookups (for 100k nodes = 17 hops, ~200ms) - **Self-Healing:** Network detects node failures, re-replicates patterns --- ### Step 5: Network Discovery (Future Customers) Another legal platform searches network: ```typescript import { NeuralNetwork } from '@aetherlight/sdk/network'; const network = new NeuralNetwork({ domain: 'legal', privacyLevel: 'zero-knowledge' }); // Search global network for non-compete patterns const matches = await network.discoverPatterns({ query: 'Handle California non-compete agreements', context: { jurisdiction: 'CA', practiceArea: 'employment-law' }, localOnly: false // Search Circle of Trust + Global Network }); // Results include patterns from 100+ legal platforms matches.forEach(match => { console.log(`Pattern: ${match.name}`); console.log(`Confidence: ${(match.confidence * 100).toFixed(0)}%`); console.log(`Validated by: ${match.proofOfWork.usageCount} platforms`); console.log(`Success rate: ${(match.proofOfWork.successRate * 100).toFixed(0)}%`); console.log(`Reasoning: ${match.chainOfThought.reasoningChain.join(' β†’ ')}`); }); ``` **Network Benefits:** - **Cross-Platform Learning:** Legal firm A's edge case helps legal firm B - **Confidence Boost:** Pattern with 100+ validations = higher confidence - **Domain Specialization:** Medical patterns don't pollute legal search - **Quality Filter:** Only patterns with β‰₯85% success rate appear in results --- ## Reputation Credit System ### Earning Credits **Contribution Rewards:** - Validate pattern (β‰₯85% success): **5 credits** - Share pattern (Circle of Trust): **10 credits** - Share pattern (Global Network): **20 credits** - Pattern used by 10+ platforms: **+50 credits** (one-time bonus) - Pattern used by 100+ platforms: **+500 credits** (one-time bonus) **Usage Example:** ```typescript const stats = await core.getNetworkStats(); console.log(stats); // { // patternsContributed: 12, // reputationCredits: 240, // platformsHelped: 47, // tier: 'Gold' (0-99: Bronze, 100-499: Silver, 500+: Gold) // } ``` ### Spending Credits **Premium Pattern Access:** - Bronze tier (0-99 credits): Access 1,000 public patterns - Silver tier (100-499 credits): Access 10,000 public + 1,000 premium patterns - Gold tier (500+ credits): Access 100,000 public + 10,000 premium + early access to experimental patterns **Premium patterns** = Patterns validated by 100+ platforms, β‰₯95% success rate, extensive Chain of Thought reasoning **Credits DON'T expire:** Reputation is permanent (incentivizes long-term contribution) --- ## Privacy & Security Guarantees ### Zero-Knowledge Architecture **What Γ†therLight Nodes Can See:** - βœ… Pattern hash (content address) - βœ… Encrypted pattern (can't decrypt) - βœ… Metadata (domain, jurisdiction) - encrypted separately - βœ… Proof of work (usage count, success rate) **What Γ†therLight Nodes CAN'T See:** - ❌ Customer identity - ❌ Pattern contents (double-encrypted) - ❌ Proprietary code - ❌ Company name or repository **Encryption Details:** ```typescript // Double-layer encryption const encrypted = await encryptPattern(pattern, { layer1: customerKey, // Customer's AES-256 key layer2: nodeKey // DHT node's AES-256 key }); // Decryption requires BOTH keys const decrypted = await decryptPattern(encrypted, { layer1: customerKey, // Customer must authorize layer2: nodeKey // Γ†therLight node assists routing }); ``` **Result:** Even if Γ†therLight servers compromised, attacker can't read patterns (missing customer keys). --- ### Consent Management **Granular Control:** ```typescript // Set default consent level await core.setConsentLevel('circle-of-trust'); // Per-pattern override await core.contributePattern('pattern-legal-001', { level: 'global', // Override default expiration: '2026-12-31' // Auto-revoke after date }); // Revoke all contributions await core.revokeAllContributions(); // Patterns removed from DHT within 24 hours ``` **Transparency Dashboard:** ```typescript const contributions = await core.listContributions(); contributions.forEach(c => { console.log(`Pattern: ${c.name}`); console.log(`Shared with: ${c.level}`); // 'circle' or 'global' console.log(`Platforms helped: ${c.platformCount}`); console.log(`Credits earned: ${c.creditsEarned}`); console.log(`Revoke: core.revokeContribution('${c.patternId}')`); }); ``` --- ## Network Effects Math ### Metcalfe's Law Application **Formula:** Value = NΒ² (where N = number of connected applications) **Example Growth:** - **10 apps:** 10Β² = 100 value units (100 pattern interactions) - **100 apps:** 100Β² = 10,000 value units (10k interactions) - **1,000 apps:** 1,000Β² = 1,000,000 value units (1M interactions) **Each interaction = pattern validation:** - App A contributes pattern β†’ App B validates β†’ Confidence +5% - App B edge case β†’ Refines pattern β†’ All apps benefit **Result:** Intelligence compounds exponentially (not linearly). --- ### Domain Specialization Effect **Without Network:** - Legal firm with 100 patterns (their own experience) - 100 patterns Γ— 1 firm = 100 validated patterns **With Network (100 legal firms):** - Each firm contributes 100 patterns - 100 patterns Γ— 100 firms = 10,000 patterns - Cross-validation: Pattern used by 50 firms = 99% confidence **Result:** New legal firm gets 10,000 patterns on day 1 (vs 100 without network). --- ### Cross-Domain Learning **Example: Legal β†’ Data Analytics** Legal firm discovers pattern: - "Use fuzzy string matching for jurisdiction detection" - Confidence: 92% (50 validations) Data analytics platform searches network: - Query: "Handle geographic region detection in SQL" - Discovers legal pattern (same underlying problem: fuzzy location matching) - Adapts pattern for SQL queries - Success rate: 88% (cross-domain transfer) **Result:** Patterns transcend domain boundaries (unexpected connections emerge). --- ## Technical Implementation ### DHT Node Requirements **Minimum Requirements (User Nodes):** - Storage: 100MB (store ~1,000 encrypted patterns) - Bandwidth: 10 Mbps (handle 100 queries/sec) - Uptime: 50%+ (intermittent OK, network self-heals) **Recommended (Regional Supernodes):** - Storage: 10GB (store ~100,000 patterns) - Bandwidth: 100 Mbps (handle 10,000 queries/sec) - Uptime: 99%+ (regional index requires stability) **Global Index (1 coordinator, community-run OR us):** - Storage: 100GB (index all regional supernodes) - Bandwidth: 1 Gbps - Uptime: 99.9%+ --- ### Pattern Replication Strategy **Kademlia DHT Properties:** - **K-buckets:** 160 buckets (SHA-256 address space) - **Replication factor:** K=20 (store on 20 closest nodes) - **Refresh interval:** 1 hour (check if patterns still exist) - **Redundancy:** Lose 19 of 20 nodes, pattern survives **Replication Logic:** ```typescript async function replicatePattern(patternId: string) { // Find 20 closest nodes (XOR distance) const closest = await dht.findClosestNodes(patternId, 20); // Check which nodes already have pattern const missing = await dht.checkReplication(patternId, closest); // Replicate to missing nodes await Promise.all( missing.map(node => dht.store(node, patternId, pattern)) ); } // Run every hour (background task) setInterval(replicatePattern, 60 * 60 * 1000); ``` --- ### Hierarchical Index (O(log log N) Lookups) **Problem:** Flat DHT = O(log N) lookups (17 hops for 100k nodes = 200ms) **Solution:** Three-tier index (user nodes β†’ regional β†’ global) ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Global Index (1 coordinator) β”‚ β”‚ Indexes: 100 regional supernodes β”‚ β”‚ Lookup: O(1) (direct lookup, 1 hop) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ↓ (regions: US-West, EU, Asia...) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Regional Supernodes (100 total, 10k users each) β”‚ β”‚ Indexes: 10,000 user nodes per region β”‚ β”‚ Lookup: O(log 10k) = 13 hops, ~150ms β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ↓ (individual user nodes) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ User Nodes (1M+ total) β”‚ β”‚ Stores: K=20 replicas of each pattern β”‚ β”‚ Lookup: Local cache (0 hops if cached) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` **Lookup Steps (Hierarchical):** 1. Query global index: "Which region has legal/California patterns?" (1 hop) 2. Query regional supernode (US-West): "Which 20 nodes store pattern X?" (1 hop) 3. Fetch pattern from closest user node (1 hop) 4. **Total: 3 hops** (vs 17 hops flat DHT) **Result:** 10Γ— faster lookups (30ms vs 200ms) --- ## Integration Examples ### Example 1: Legal Research Platform (Network-Enabled) ```typescript import { AetherlightCore, NeuralNetwork } from '@aetherlight/sdk'; const core = new AetherlightCore({ domain: 'legal' }); const network = new NeuralNetwork({ contributePatterns: true, // Opt-in to contribution privacyLevel: 'circle-of-trust', trustCircle: ['legal-firm-a', 'legal-firm-b', 'legal-firm-c'] }); // Search local patterns FIRST (fast: <10ms) let matches = await core.matchPattern({ query: 'California non-compete enforceability', context: { jurisdiction: 'CA', practiceArea: 'employment-law' } }); if (matches.confidence < 0.85) { // Low confidence? Search Circle of Trust (medium: <100ms) const circleMatches = await network.discoverPatterns({ query: 'California non-compete enforceability', context: { jurisdiction: 'CA' }, searchScope: 'circle-of-trust' }); if (circleMatches.length > 0) { matches = circleMatches; } } if (matches.confidence < 0.85) { // Still low? Search global network (slower: <500ms) const globalMatches = await network.discoverPatterns({ query: 'California non-compete enforceability', context: { jurisdiction: 'CA' }, searchScope: 'global' }); matches = globalMatches; } // Track outcome (for future contribution) await core.trackOutcome({ patternId: matches[0].id, outcome: 'success', metrics: { executionTime: '45ms', relevanceScore: 0.95 } }); ``` **Performance:** - Local search: <10ms (SQLite) - Circle of Trust: <100ms (DHT within 5 nodes) - Global network: <500ms (DHT across 100k nodes) - **Total: <610ms worst case** (all three tiers) --- ### Example 2: Data Analytics (Passive Contribution) ```typescript import { AetherlightCore } from '@aetherlight/sdk'; const core = new AetherlightCore({ domain: 'analytics', networkContribution: { autoContribute: true, // Automatic contribution after validation consentLevel: 'global', // Share with all Γ†therLight nodes minValidations: 5 // Wait for 5 successful uses before contributing } }); // Customer uses pattern 5 times successfully // SDK automatically contributes to network (no prompt needed) // Check contribution status const stats = await core.getNetworkStats(); console.log(`Patterns contributed: ${stats.patternsContributed}`); console.log(`Reputation credits: ${stats.reputationCredits}`); console.log(`Platforms helped: ${stats.platformsHelped}`); ``` --- ## Business Model Integration ### SDK Licensing + Network Credits **Pricing Tiers (SDK):** - **Starter ($99/mo):** 1 app, 1,000 public patterns, local-only - **Growth ($299/mo):** 3 apps, 10,000 patterns, Circle of Trust access - **Enterprise ($999/mo):** Unlimited apps, 100,000 patterns, global network access, priority support **Network Credits (Reputation System):** - Contribute pattern β†’ Earn 10-20 credits - Credits unlock premium patterns (no additional cost) - Gold tier (500+ credits) β†’ Early access to experimental patterns **Result:** Dual revenue model (subscriptions + reputation economy). --- ### Revenue Projections (Network Effects) **Conservative Scenario (100 apps, 50% contribute patterns):** - 100 apps Γ— $299/mo (avg) = $29,900 MRR ($358,800 ARR) - 50 contributing apps Γ— 10 patterns each = 500 patterns - 500 patterns Γ— 50 validations each = 25,000 pattern interactions - Network intelligence: 25,000 validated patterns **Aggressive Scenario (1,000 apps, 70% contribute):** - 1,000 apps Γ— $299/mo (avg) = $299,000 MRR ($3.6M ARR) - 700 contributing apps Γ— 20 patterns each = 14,000 patterns - 14,000 patterns Γ— 100 validations = 1,400,000 pattern interactions - Network intelligence: 1.4M validated patterns **Metcalfe's Law Applied:** - 100 apps = $358K ARR, 25K patterns - 1,000 apps = $3.6M ARR, 1.4M patterns (100Γ— intelligence, 10Γ— revenue) --- ## Success Metrics ### Network Health Indicators **Contribution Metrics:** - Pattern contribution rate: Target >50% of SDK customers - Average validations per pattern: Target >20 validations - Cross-domain pattern transfers: Target >10% of discoveries **Quality Metrics:** - Average pattern confidence: Target >85% - Pattern success rate: Target >90% - False positive rate: Target <5% **Network Performance:** - DHT lookup latency (p50): Target <100ms - DHT lookup latency (p95): Target <500ms - Pattern replication factor: Target K=20 (100% coverage) - Node uptime: Target >80% (community nodes) **Reputation Economy:** - Active contributors: Target >50% of customers - Gold tier members: Target >10% of customers - Premium pattern access: Target >30% of discoveries use premium patterns --- ## Roadmap ### Phase 1: Local Intelligence (Weeks 1-2) - βœ… SQLite pattern storage (local-only) - βœ… Confidence scoring (multi-dimensional) - βœ… Outcome tracking (success/failure) - ⏳ Consent management UI (opt-in prompts) ### Phase 2: Circle of Trust (Weeks 3-4) - ⏳ Shamir secret sharing (3-of-5 threshold) - ⏳ Peer-to-peer encrypted sharing - ⏳ Trust circle management (add/remove peers) - ⏳ Reputation credit system (earn/spend) ### Phase 3: Kademlia DHT (Weeks 5-7) - ⏳ DHT node implementation (libp2p Rust bindings) - ⏳ Content-addressed pattern storage - ⏳ K=20 replication - ⏳ O(log N) discovery ### Phase 4: Hierarchical Index (Weeks 8-9) - ⏳ Regional supernodes (10k users each) - ⏳ Global index coordinator - ⏳ O(log log N) lookups (3 hops) ### Phase 5: Network Effects (Weeks 10+) - ⏳ Cross-domain learning (legal β†’ analytics) - ⏳ Premium pattern marketplace - ⏳ Gold tier benefits (early access) - ⏳ Community governance (DAO for pattern curation) --- ## Related Documents - [SDK_ARCHITECTURE.md](./SDK_ARCHITECTURE.md) - Overall SDK separation strategy - [SDK_INTEGRATION_GUIDE.md](./SDK_INTEGRATION_GUIDE.md) - 30-minute integration guide - [DOMAIN_TEMPLATES.md](./DOMAIN_TEMPLATES.md) - 5 copy-paste integration templates - [DISTRIBUTED_PATTERN_NETWORK.md](./docs/build/DISTRIBUTED_PATTERN_NETWORK.md) - Full DHT architecture - [Pattern-DHT-001.md](./docs/patterns/Pattern-DHT-001.md) - Kademlia DHT implementation - [Pattern-TRUST-001.md](./docs/patterns/Pattern-TRUST-001.md) - Circle of Trust encryption --- ## Conclusion **THE BREAKTHROUGH:** Network effects transform individual SDK customers into a **collective intelligence network**. Every integration makes the network smarter. Every pattern contribution helps 100+ other applications. Every validation increases confidence. **THE MOAT:** First-mover advantage in network effects is insurmountable. Once we have 1,000 contributing applications, competitors can't catch up (they'd need 1,000,000 pattern interactions to match our intelligence depth). **THE VISION:** By 2027, Γ†therLight Network becomes the **largest validated pattern library in the world**β€”spanning legal, medical, analytics, engineering, and 50+ other domains. Developers integrate our SDK not just for the patterns we provide, but for the **collective knowledge of 10,000+ contributing applications**. --- **STATUS:** Network contribution architecture documented **NEXT:** SDK_PRICING.md (licensing model details), then update CLAUDE.md with SDK vision **OWNER:** Core Team **CLASSIFICATION:** πŸ” INTERNAL (Technical foundation for network learning)