UNPKG

adpa-enterprise-framework-automation

Version:

Modular, standards-compliant Node.js/TypeScript automation framework for enterprise requirements, project, and data management. Provides CLI and API for BABOK v3, PMBOK 7th Edition, and DMBOK 2.0 (in progress). Production-ready Express.js API with TypeSpe

365 lines (277 loc) 11.4 kB
# Feedback System for Project Managers ## Overview The ADPA (Automated Document Processing Agent) feedback system enables project managers to contribute to and improve the quality of AI-generated documents through a comprehensive feedback collection, analysis, and integration mechanism. ## Key Features ### 🎯 **Comprehensive Feedback Collection** - **Multiple Feedback Types**: Quality, accuracy, completeness, clarity, compliance, and suggestions - **Rating System**: 1-5 star rating scale for quantitative assessment - **Priority Levels**: Low, medium, high, and critical priority classification - **Rich Context**: Document-specific feedback with suggested improvements - **Tagging System**: Categorize feedback for better organization ### 🧠 **AI-Driven Improvement** - **Pattern Analysis**: Automatically identify common issues across documents - **Prompt Optimization**: Use feedback to enhance AI prompts for better document generation - **Quality Prediction**: Predict quality improvements based on feedback patterns - **Iterative Learning**: Continuous improvement through feedback loops ### 📊 **Analytics & Insights** - **Trend Analysis**: Track quality improvements over time - **Document Performance**: Monitor individual document type performance - **Actionable Recommendations**: Get specific suggestions for improvement - **Impact Measurement**: Track the effectiveness of implemented changes ### 🔄 **Integration with Document Generation** - **Feedback-Enhanced Generation**: Apply learned improvements during document creation - **Quality Thresholds**: Set minimum quality standards for document generation - **Automated Improvements**: Automatically apply successful feedback patterns ## Architecture ### Data Model ```typescript interface DocumentFeedback { projectId: string; documentType: string; feedbackType: 'quality' | 'accuracy' | 'completeness' | 'clarity' | 'compliance' | 'suggestion'; rating: number; // 1-5 scale title: string; description: string; suggestedImprovement?: string; priority: 'low' | 'medium' | 'high' | 'critical'; status: 'open' | 'in-review' | 'implemented' | 'rejected' | 'closed'; submittedBy: string; submittedByName: string; tags: string[]; category: string; aiPromptImpact?: { affectedPrompts: string[]; suggestedPromptChanges: string[]; }; qualityMetrics?: { beforeScore?: number; afterScore?: number; improvementMeasured?: boolean; }; } ``` ### Core Components 1. **FeedbackModal** - User interface for submitting feedback 2. **FeedbackDashboard** - Management interface for reviewing feedback 3. **FeedbackAnalytics** - Analytics and insights visualization 4. **FeedbackIntegrationService** - Backend service for processing feedback 5. **FeedbackEnhancedGenerator** - Document generator with feedback integration ## Usage Guide ### For Project Managers #### 1. Submitting Feedback **Via Web Interface:** 1. Navigate to a project's document view 2. Click the "Feedback" button on any document 3. Fill out the feedback form: - Select feedback type (quality, accuracy, etc.) - Provide a 1-5 star rating - Write a descriptive title and detailed description - Add suggested improvements (optional) - Set priority level - Add relevant tags **Via API:** ```bash curl -X POST /api/v1/feedback \ -H "Content-Type: application/json" \ -d '{ "projectId": "project-123", "documentType": "project-charter", "feedbackType": "quality", "rating": 3, "title": "Missing stakeholder analysis", "description": "The project charter lacks comprehensive stakeholder analysis", "suggestedImprovement": "Add stakeholder power/interest grid and engagement strategies", "priority": "high", "category": "pmbok" }' ``` #### 2. Reviewing Feedback **Dashboard View:** - Access the feedback dashboard to see all project feedback - Filter by status, priority, type, or document - Track feedback resolution progress - View analytics and trends **Analytics View:** - Monitor quality trends over time - Identify top issues and improvement areas - Review success stories and implemented improvements - Get actionable recommendations #### 3. Managing Feedback Lifecycle **Status Management:** - **Open**: Newly submitted feedback awaiting review - **In Review**: Feedback being analyzed and addressed - **Implemented**: Improvements have been applied - **Rejected**: Feedback determined not actionable - **Closed**: Feedback resolved and verified ### For Developers/Administrators #### 1. CLI Commands **Analyze Feedback Patterns:** ```bash # Analyze all feedback patterns rga feedback analyze # Analyze specific document type rga feedback analyze --document-type project-charter # Analyze specific project rga feedback analyze --project project-123 --days 30 ``` **Apply Feedback Improvements:** ```bash # Preview improvements (dry run) rga feedback apply --project project-123 --dry-run # Apply improvements rga feedback apply --project project-123 ``` **Generate with Feedback Enhancement:** ```bash # Generate documents with feedback-driven improvements rga feedback generate --context "Digital Banking Platform" --project project-123 --learning --threshold 85 ``` **View Feedback Statistics:** ```bash # Overall statistics rga feedback stats # Project-specific statistics rga feedback stats --project project-123 --days 30 ``` #### 2. API Endpoints **Feedback Management:** - `POST /api/v1/feedback` - Submit new feedback - `GET /api/v1/feedback/project/:projectId` - Get project feedback - `GET /api/v1/feedback/project/:projectId/document/:documentType` - Get document-specific feedback - `PATCH /api/v1/feedback/:feedbackId/status` - Update feedback status **Analytics:** - `GET /api/v1/feedback/analytics/:projectId` - Get project analytics - `GET /api/v1/feedback/summary` - Get dashboard summary - `GET /api/v1/feedback/insights` - Get AI improvement insights **Search:** - `GET /api/v1/feedback/search` - Search feedback across projects #### 3. Integration with Document Generation **Enhanced Generator Usage:** ```typescript import { FeedbackEnhancedGenerator } from './modules/documentGenerator/FeedbackEnhancedGenerator.js'; const generator = new FeedbackEnhancedGenerator('Project Context', { projectId: 'project-123', applyFeedbackImprovements: true, learningMode: true, qualityThreshold: 80, maxIterations: 3 }); const result = await generator.generateWithFeedbackEnhancement(); ``` **Feedback Integration Service:** ```typescript import { FeedbackIntegrationService } from './services/FeedbackIntegrationService.js'; const service = new FeedbackIntegrationService(); // Analyze patterns const insights = await service.analyzeFeedbackPatterns('project-charter', 30); // Apply improvements const improvements = await service.applyFeedbackImprovements('project-123'); // Generate recommendations const recommendations = await service.generateRecommendations('project-123'); ``` ## Best Practices ### For Project Managers 1. **Provide Specific Feedback** - Be detailed in descriptions - Include specific examples - Suggest concrete improvements 2. **Use Appropriate Priority Levels** - Critical: Issues that prevent document use - High: Significant quality problems - Medium: Moderate improvements needed - Low: Minor enhancements 3. **Regular Review Cycles** - Review feedback weekly - Track implementation progress - Monitor quality trends 4. **Collaborative Approach** - Involve team members in feedback - Share insights across projects - Learn from successful patterns ### For Development Teams 1. **Prompt Engineering** - Use feedback insights to improve AI prompts - Test prompt changes with historical data - Monitor impact of prompt modifications 2. **Quality Monitoring** - Set up automated quality thresholds - Track feedback trends over time - Implement continuous improvement processes 3. **Integration Testing** - Test feedback integration with document generation - Validate improvement predictions - Monitor system performance ## Configuration ### Environment Variables ```bash # Database connection for feedback storage MONGODB_URI=mongodb://localhost:27017/adpa # API authentication API_KEY=your-api-key # AI provider settings (for prompt optimization) GOOGLE_AI_API_KEY=your-google-ai-key AZURE_OPENAI_ENDPOINT=your-azure-endpoint ``` ### Database Setup The feedback system requires MongoDB for data storage. Ensure your database connection is configured in `src/config/database.ts`. ### API Authentication Feedback endpoints require API key authentication. Configure your API keys in the authentication middleware. ## Monitoring and Maintenance ### Key Metrics to Track 1. **Feedback Volume**: Number of feedback items per period 2. **Average Rating**: Overall quality rating trends 3. **Response Rate**: Percentage of documents receiving feedback 4. **Implementation Rate**: Percentage of feedback implemented 5. **Quality Improvement**: Measured improvement in document quality ### Regular Maintenance Tasks 1. **Weekly**: Review open feedback items 2. **Monthly**: Analyze feedback patterns and trends 3. **Quarterly**: Update AI prompts based on insights 4. **Annually**: Review and optimize feedback processes ### Troubleshooting **Common Issues:** 1. **Low Feedback Volume** - Simplify feedback submission process - Provide training on feedback system - Implement feedback reminders 2. **Poor Quality Predictions** - Review feedback data quality - Adjust AI prompt optimization algorithms - Increase feedback sample size 3. **Slow Implementation** - Streamline feedback review process - Automate low-risk improvements - Provide clear implementation guidelines ## Future Enhancements ### Planned Features 1. **Machine Learning Integration** - Advanced pattern recognition - Predictive quality modeling - Automated prompt optimization 2. **Real-time Feedback** - Live document collaboration - Instant feedback integration - Real-time quality monitoring 3. **Advanced Analytics** - Sentiment analysis of feedback - Cross-project pattern analysis - Predictive quality forecasting 4. **Integration Expansions** - Microsoft Office integration - Slack/Teams notifications - JIRA/Azure DevOps integration ### Contributing To contribute to the feedback system: 1. Review the codebase structure 2. Follow the established patterns 3. Add comprehensive tests 4. Update documentation 5. Submit pull requests with detailed descriptions ## Support For questions or issues with the feedback system: 1. Check the troubleshooting section 2. Review the API documentation 3. Submit issues via the project repository 4. Contact the development team --- *This feedback system is designed to create a continuous improvement loop for AI-generated documents, ensuring that project managers can effectively contribute to and enhance document quality over time.*